The generator matrix
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 1 1 1 0 1 1 1 0 1 X 1 1 1 1 0 1 1 1 1 X 1 1 1 1 1 1 2 1 0 1 1 X 1 2 X 1 1 0 X 1 1 1
0 X 0 0 0 0 0 2 2 X X+2 X X X X+2 X 0 X+2 2 X 2 X 0 X 2 X+2 X 0 X+2 2 X+2 0 0 2 0 X X X+2 2 2 X+2 0 0 X+2 X 0 2 0 X X X 2 0 2 X+2 0 X X 0 X 2 2 2 X X+2 0 X X X 0 2 X+2 X+2 0 X X+2 X 0 X+2 2 X 0 0 X+2 0 X 2 X+2 X 2
0 0 X 0 0 2 X+2 X X X X X X+2 0 0 0 2 2 X+2 X 2 0 0 X+2 2 2 X X+2 0 X X X+2 X X+2 X+2 0 2 0 0 2 X+2 2 X X 0 0 0 0 X X X X X X+2 2 2 X X+2 X X X+2 0 X 2 X+2 0 0 2 0 2 2 2 0 0 2 X 0 2 X+2 X 0 2 X 0 X+2 0 X 2 X+2 2
0 0 0 X 0 X+2 X+2 X 2 X+2 X+2 0 0 X X 2 X 2 X+2 0 X+2 0 2 X 2 X X 2 X X 0 0 2 X 0 X+2 2 X+2 X 2 0 0 X X+2 0 X+2 0 2 0 X+2 X 0 0 2 X X 2 2 X+2 X+2 X+2 X X X 0 X+2 2 2 X X+2 X+2 X+2 X X X+2 X X 0 X X X X X+2 X+2 0 X+2 0 2 X X+2
0 0 0 0 X X 2 X+2 X X+2 2 2 X 2 X+2 X X 2 2 X+2 0 X+2 0 X+2 X+2 X+2 0 X+2 0 X 0 2 0 X+2 X 0 2 X+2 X+2 0 X+2 X+2 0 X+2 X 2 0 X 0 2 X+2 2 X+2 0 0 0 X 2 0 0 X+2 X X+2 2 0 X X+2 X X 2 2 2 2 2 X+2 X X 0 X+2 0 0 X X X 0 2 2 X 0 X+2
generates a code of length 90 over Z4[X]/(X^2+2,2X) who´s minimum homogenous weight is 82.
Homogenous weight enumerator: w(x)=1x^0+40x^82+66x^83+101x^84+98x^85+115x^86+184x^87+211x^88+218x^89+144x^90+182x^91+184x^92+128x^93+105x^94+48x^95+49x^96+48x^97+33x^98+22x^99+17x^100+14x^101+8x^102+8x^103+11x^104+6x^105+2x^106+2x^107+2x^108+1x^154
The gray image is a code over GF(2) with n=360, k=11 and d=164.
This code was found by Heurico 1.16 in 0.821 seconds.