We will reply to your message within an hour.
More
Use these valves in general purpose applications, such as those with water, oil, air, and inert gas.
Extend your reach in hard-to-access areas—turn these valves on and off using a square ratchet to grasp the hole at the end of the handle. Use with water, oil, air, and inert gas.
An easy-to-read flow-indicating handle shows the percentage the valve is open. These valves are for use with water, oil, inert gas, and steam.
Attach a gauge to the side port on these valves to monitor pressure, temperature, and other measurements in your line. Use with water and air.
For installation through thick insulation, these valves have an extra-long stem.
A built-in strainer traps debris and allows you to replace the screen without disconnecting your pipeline.
Monitor and maintain flow quality from a single valve—these valves have a gauge port, strainer, and drain built in.
These valves handle twice the pressure of other compact valves. Install them in tight spots, such as where pipelines are crowded together. Use with water, oil, air, and inert gas.
Install these valves in tight spots, such as where pipelines are crowded together. They’re less than half as long as standard threaded valves and one-third shorter in height. Use with water, oil, air, and inert gas.
Access the handle of these valves while protecting your line behind an instrument panel. They have threads and a hex nut below the handle for panel mounting.
With a three-piece bolted body that disassembles for access to internal components, you can clean and repair these valves without unthreading them from your line.
Rated for at least three times the pressure of standard threaded valves, these valves are used to start and stop the flow of compressed gas, pressurized water, or steam.
For fast installation and removal from pipelines, these valves have a union fitting that disassembles into multiple pieces. They’re for use with water, oil, air, inert gas, and steam.
Use these valves with water, air, and inert gas.
Fit these short and slim valves in control boxes, panels, and other tight spots. Made of plastic, they won’t pit or corrode on the inside like metal valves, and they’re lighter in weight for easy handling.
These valves have barbs that grip onto tubing, providing a secure hold. Because they’re made of metal, they are more durable than plastic valves and withstand higher temperatures.
Barbs grip onto tubing, giving these valves a secure hold. Made of plastic, they won’t pit or corrode on the inside like metal valves, and they’re lighter in weight for easy handling.
For extra gripping power and a strong seal, the Yor-Lok fittings on these valves have two sleeves that bite into tubing as you tighten the nut. All are compatible with Swagelok®, Let-Lok, and Parker A-Lok fittings. These valves are for use with water, oil, air, and inert gas.
Easily access the handle of these valves while protecting your line behind an instrument panel. They have threads and a hex nut below the handle for panel mounting. For extra gripping power and a strong seal, they have Yor-Lok fittings with two sleeves that bite into tubing as you tighten the nut. They’re compatible with Swagelok®, Let-Lok, and Parker A-Lok fittings.
Clean and maintain these valves without removing welded connections. They have a three-piece bolted body that disassembles inline for easy access to internal components. Use with water, oil, air, inert gas, and steam.
Insert tubing into the fittings on these valves—no heat, solder, or flux required.
Monitor and maintain flow quality from a single valve. Thanks to their solder-connect union fitting, these valves are especially useful in lines that require frequent maintenance and cleaning.
Made of metal, these valves are more durable than plastic valves and withstand higher temperatures. A compression sleeve bites into tubing as you tighten the nut, forming a strong seal.
A short body length and low profile make these valves ideal for installation in tight spaces, such as between pipelines. They have a compression sleeve that bites into tubing as you tighten the nut.
Easily access the handle of these valves while protecting your line behind an instrument panel. A compression sleeve bites into tubing as you tighten the nut, forming a strong seal.
Use these plastic valves for a lightweight and economical alternative to metal. They have a compression sleeve that bites into tubing as you tighten the nut, forming a strong seal. Use with water, air, and inert gas.
For chemical-processing applications in confined areas, these valves have a low-profile handle to fit in tight spots. A rubber seal and a plastic body stand up to aggressive, corrosive solutions.
To withstand aggressive and corrosive solutions in chemical-processing applications, these valves have a fluoroelastomer seal and a PVC or CPVC body.
Attach gauges or sensors to these valves so you can remove them for maintenance and calibration without depressurizing your line. They are also known as block and bleed valves.
There’s no need to unbolt these valves for cleaning—remove the valve handle and slide the valve apart for inline access to internal components. Also known as elliptical valves, they have a fluoroelastomer seal and a polypropylene body to withstand aggressive and corrosive solutions in chemical-processing applications.
Streamline your installation and removal process. These valves give you the leak-tight permanent connection of a socket connect with the ease of fittings that come apart.
Insert tubing into the fittings on these valves—no heat, solder, or flux required. To withstand aggressive and corrosive solutions, they have a chemical-resistant fluoroelastomer seal and a plastic body.
Barbs grip onto tubing, providing a secure hold. To withstand aggressive and corrosive solutions in chemical-processing applications, these valves have a plastic body and a chemical-resistant seal.
For use in drinking water systems, these valves meet NSF/ANSI 61.
No need to completely remove these valves from your line for cleaning and repairs. The bolted three-piece body comes apart, so you can easily access their internal components.
A short body length and low profile make these valves ideal for installation in tight spaces, such as behind panels. They meet NSF/ANSI 61 standards for safe use in drinking water systems.
Made of plastic, these valves won’t pit or corrode on the inside like metal valves, and they’re lighter in weight. They meet NSF/ANSI 61 for use with drinking water.
Protect your drinking water line behind an instrument panel while keeping the handle handy. These valves have a nut that threads onto the stem to mount the handle onto the panel.
Ideal for lines that need frequent maintenance, these valves have union fittings that disassemble quickly for removal. They meet NSF/ANSI 61 for use with drinking water.
Insert your tubing into the fittings of these valves with just a push—the internal rings will grip it tight. Made of plastic, these valves are a lightweight alternative to metal valves. All meet NSF/ANSI 61 for safe use with drinking water.
Barbs grip onto tubing to give these valves a secure hold. These valves meet NSF/ANSI 61, so they’re safe to use with drinking water.
Start and stop flow to your drinking water system without worrying about leaks. These valves have a compression sleeve that bites into tubing as you tighten the nut.
Protect personnel and equipment in the presence of diesel fuel, fuel oil, gasoline, and kerosene. Fire-tested to meet American Petroleum Institute (API) 607, Edition 4, these valves are designed to securely isolate fluid and prevent the spread of fire.
No need to completely remove these valves from your line for servicing. The bolted three-piece body comes apart, so you can easily access their internal components. Fire-tested to meet American Petroleum Institute (API) 607, these valves securely isolate diesel fuel, fuel oil, kerosene, and gasoline to prevent the spread of fire.
Install these valves to start and stop the flow of diesel fuel, fuel oil, kerosene, and gasoline. Fire-tested to meet American Petroleum Institute (API) 607, these valves are designed to securely isolate fluid and prevent the spread of fire. Insert unthreaded pipe into the socket ends and weld to create a permanent, leak-tight connection.
Push tubing into the fittings on these valves and an internal gripping ring and O-ring hold it tight—no heat, solder, or flux required. They meet either NSF/ANSI standards or are FDA compliant for use with food.
To prevent leaks, these valves have barbed fittings that grip onto tubing to create a strong hold. They meet NSF/ANSI standards or are FDA compliant for use with food.
Control flow in lines where preventing leaks is critical, such as bottling lines. These valves have a compression sleeve that bites into tubing as you tighten the nut.
The bolted-body design provides strength for a tight seal in vacuum conditions up to 29.9” Hg. Use these valves in vacuum applications, such as coating, heat treating, leak testing, and analyzing gases.
Often used in HVAC or refrigeration systems, these valves are designed to control the flow of ammonia, nitrogen, and other harsh chemicals.
Use these valves in cryogenic systems to control the flow of liquid nitrogen, carbon dioxide, and argon.
The three-piece bolted body comes apart for access to internal components without unthreading pipe connections and removing the valve from your line.
For use in general purpose applications with water, oil, and inert gas.
Limit wear and damage in high-cycling applications—these valves have additional seals that prevent leakage to reduce maintenance time.
Their ball-valve design allows these valves to handle three times the flow of butterfly valves.
With a ball-valve design, these valves can handle three times the flow of butterfly valves.
For food and beverage applications that require frequent cleaning, these valves have quick-clamp connections, polished internal surfaces, and a three-piece bolted body for easy disassembly.
These valves divert flow between ports. Use with water, oil, air, and inert gas.
Threads and a hex nut below the handle let you install these valves through instrument panels. They are for use with water, oil, air, and inert gas. All divert flow between ports.
A metal body provides more strength and durability than plastic. These valves have a low-profile handle and a short end-to-end length to fit in tight spots. All are for use with water, oil, air, and inert gas. They divert flow between ports.
For a lightweight alternative to metal valves, these have a plastic body. To fit in tight spots, they have a low-profile handle and a short end-to-end length. Valves are for use with water, oil, air, and inert gas. All divert flow between ports.
There’s no need to unbolt these valves for cleaning—remove the handle and slide the valve apart for inline access to internal components. Also known as elliptical valves, they have a fluoroelastomer seal and a polypropylene body for diverting flow in chemical-processing applications.
To test water quality without interrupting flow, drain a small amount of liquid through the sampling outlet.
For use with threaded pipe, these valves have NPT connections. Use them with water, oil, air, and inert gas. All operate on compressed air to automatically divert flow between ports more quickly than motor-driven valves. You must control the air to the actuator using either an electric pilot valve or a manual on/off valve.
Bolt these valves to flanges. Use them with water, oil, air, and inert gas. All operate on compressed air to automatically divert flow between ports more quickly than motor-driven valves. You must control the air to the actuator using either an electric pilot valve or a manual on/off valve.
For food and beverage systems that require frequent cleaning, these valves have sanitary quick-clamp connections for easy disassembly. They operate on compressed air to automatically divert flow between ports more quickly than motor-driven valves. You must control the air to the actuator using either an electric pilot valve or a manual on/off valve.
The motor on these valves can handle diverting applications with high flow rates and pressures. They operate on electricity to automatically divert flow between ports.
A padlock locks the handle of these valves in the shut-off position so you can disconnect air tools safely.
When system pressure reaches the maximum, these valves open and send an air signal to turn on a downstream device such as a discharge valve or throttle. They close and send a signal to turn the device off when pressure drops.
Start and stop flow with a quarter turn of the handle. Also known as ball valves.
Lock the handle using a padlock.
Turn the handle to direct flow between ports.