Carbide Square End Mills
For longer tool life and a better finish in general purpose milling applications, these solid carbide end mills are harder, stronger, and more wear resistant than high-speed steel and cobalt steel end mills. Their extreme hardness means they are brittle, so a highly rigid setup, such as a CNC machine, is necessary to prevent the end mill from breaking. They have a square end for milling square slots, pockets, and edges.
End mills with fewer flutes provide better chip clearance for high-volume, high-speed plunge, slotting, and roughing cuts; end mills with more flutes provide a finer finish and operate with less vibration when run at high speeds.
Use uncoated end mills for general purpose milling and short production runs. Use coated end mills for demanding, high-speed jobs in hard material as well as for longer production runs. They’re more wear resistant than uncoated end mills. Titanium-nitride (TiN) coated end mills create less friction than uncoated end mills, which means they last longer when run at similar speeds. Titanium-carbonitride (TiCN) coated end mills have a hard, smooth finish that resists chipping and wear and prevents material from accumulating on the cutting edge. They’re especially good for use in aluminum. Titanium-aluminum-nitride (TiAlN) coated end mills and aluminum-titanium-nitride (AlTiN) coated end mills dissipate heat better than other end mills, especially at high speeds. At high temperatures, the coating creates a layer of aluminum oxide that transfers heat to the chips, keeping the tool cool, even when used without lubrication. Aluminum-titanium-nitride (AlTiN) has a higher percentage of aluminum than titanium-aluminum-nitride (TiAlN).
Center-cutting end mills allow plunge cuts into a surface.
For technical drawings and 3-D models, click on a part number.
Mill Dia. | Shank Dia. | Lg. of Cut | O'all Lg. | Flute Spacing | Helix Angle | For Use On | End Mill Type | Each | |
Uncoated | |||||||||
---|---|---|---|---|---|---|---|---|---|
2 Flute | |||||||||
10mm | 10mm | 22mm | 70mm | Equal | 30° | Aluminum, Brass, Bronze, Fiberglass, Hardened Steel, Iron, Nickel, Plastic, Stainless Steel, Steel, Titanium, Tool Steel | Center Cutting | 0000000 | 000000 |
10mm | 10mm | 50mm | 100mm | Equal | 30° | Aluminum, Brass, Bronze, Fiberglass, Hardened Steel, Iron, Nickel, Plastic, Stainless Steel, Steel, Titanium, Tool Steel | Center Cutting | 0000000 | 00000 |
3 Flute | |||||||||
10mm | 10mm | 22mm | 70mm | Equal | 30° | Aluminum, Brass, Bronze, Fiberglass, Hardened Steel, Iron, Nickel, Plastic, Stainless Steel, Steel, Titanium, Tool Steel | Center Cutting | 0000000 | 00000 |
10mm | 10mm | 50mm | 100mm | Equal | 30° | Aluminum, Brass, Bronze, Fiberglass, Hardened Steel, Iron, Nickel, Plastic, Stainless Steel, Steel, Titanium, Tool Steel | Center Cutting | 0000000 | 00000 |
4 Flute | |||||||||
10mm | 10mm | 22mm | 70mm | Equal | 30° | Aluminum, Brass, Bronze, Fiberglass, Hardened Steel, Iron, Nickel, Plastic, Stainless Steel, Steel, Titanium, Tool Steel | Center Cutting | 00000000 | 00000 |
10mm | 10mm | 50mm | 100mm | Equal | 30° | Aluminum, Brass, Bronze, Fiberglass, Hardened Steel, Iron, Nickel, Plastic, Stainless Steel, Steel, Titanium, Tool Steel | Center Cutting | 00000000 | 00000 |
Mill Dia. | Shank Dia. | Lg. of Cut | O'all Lg. | Flute Spacing | Helix Angle | For Use On | End Mill Type | Each | |
Titanium Nitride (TiN) Coated | |||||||||
---|---|---|---|---|---|---|---|---|---|
2 Flute | |||||||||
10mm | 10mm | 22mm | 70mm | Equal | 30° | Aluminum, Brass, Bronze, Hardened Steel, Iron, Nickel, Stainless Steel, Steel, Titanium, Tool Steel | Center Cutting | 00000000 | 000000 |
10mm | 10mm | 50mm | 100mm | Equal | 30° | Aluminum, Brass, Bronze, Hardened Steel, Iron, Nickel, Stainless Steel, Steel, Titanium, Tool Steel | Center Cutting | 00000000 | 00000 |
3 Flute | |||||||||
10mm | 10mm | 22mm | 70mm | Equal | 30° | Aluminum, Brass, Bronze, Hardened Steel, Iron, Nickel, Stainless Steel, Steel, Titanium, Tool Steel | Center Cutting | 00000000 | 00000 |
10mm | 10mm | 50mm | 100mm | Equal | 30° | Aluminum, Brass, Bronze, Hardened Steel, Iron, Nickel, Stainless Steel, Steel, Titanium, Tool Steel | Center Cutting | 00000000 | 00000 |
4 Flute | |||||||||
10mm | 10mm | 22mm | 70mm | Equal | 30° | Aluminum, Brass, Bronze, Hardened Steel, Iron, Nickel, Stainless Steel, Steel, Titanium, Tool Steel | Center Cutting | 00000000 | 00000 |
10mm | 10mm | 50mm | 100mm | Equal | 30° | Aluminum, Brass, Bronze, Hardened Steel, Iron, Nickel, Stainless Steel, Steel, Titanium, Tool Steel | Center Cutting | 00000000 | 00000 |
Mill Dia. | Shank Dia. | Lg. of Cut | O'all Lg. | Flute Spacing | Helix Angle | For Use On | End Mill Type | Each | |
Titanium Carbonitride (TiCN) Coated | |||||||||
---|---|---|---|---|---|---|---|---|---|
2 Flute | |||||||||
10mm | 10mm | 22mm | 70mm | Equal | 30° | Aluminum, Brass, Bronze, Fiberglass, Iron, Plastic, Stainless Steel, Steel | Center Cutting | 00000000 | 000000 |
10mm | 10mm | 50mm | 100mm | Equal | 30° | Aluminum, Brass, Bronze, Fiberglass, Iron, Plastic, Stainless Steel, Steel | Center Cutting | 00000000 | 00000 |
3 Flute | |||||||||
10mm | 10mm | 22mm | 70mm | Equal | 30° | Aluminum, Brass, Bronze, Fiberglass, Iron, Plastic, Stainless Steel, Steel | Center Cutting | 00000000 | 00000 |
10mm | 10mm | 50mm | 100mm | Equal | 30° | Aluminum, Brass, Bronze, Fiberglass, Iron, Plastic, Stainless Steel, Steel | Center Cutting | 00000000 | 00000 |
4 Flute | |||||||||
10mm | 10mm | 22mm | 70mm | Equal | 30° | Aluminum, Brass, Bronze, Fiberglass, Iron, Plastic, Stainless Steel, Steel | Center Cutting | 00000000 | 00000 |
10mm | 10mm | 50mm | 100mm | Equal | 30° | Aluminum, Brass, Bronze, Fiberglass, Iron, Plastic, Stainless Steel, Steel | Center Cutting | 00000000 | 00000 |
Mill Dia. | Shank Dia. | Lg. of Cut | O'all Lg. | Flute Spacing | Helix Angle | For Use On | End Mill Type | Each | |
Titanium Aluminum Nitride (TiAlN) Coated | |||||||||
---|---|---|---|---|---|---|---|---|---|
2 Flute | |||||||||
10mm | 10mm | 22mm | 70mm | Equal | 30° | Hardened Steel, Iron, Nickel, Stainless Steel, Steel, Titanium, Tool Steel | Center Cutting | 00000000 | 000000 |
10mm | 10mm | 50mm | 100mm | Equal | 30° | Hardened Steel, Iron, Nickel, Stainless Steel, Steel, Titanium, Tool Steel | Center Cutting | 00000000 | 00000 |
3 Flute | |||||||||
10mm | 10mm | 22mm | 70mm | Equal | 30° | Hardened Steel, Iron, Nickel, Stainless Steel, Steel, Titanium, Tool Steel | Center Cutting | 00000000 | 00000 |
10mm | 10mm | 50mm | 100mm | Equal | 30° | Hardened Steel, Iron, Nickel, Stainless Steel, Steel, Titanium, Tool Steel | Center Cutting | 00000000 | 00000 |
4 Flute | |||||||||
10mm | 10mm | 22mm | 70mm | Equal | 30° | Hardened Steel, Iron, Nickel, Stainless Steel, Steel, Titanium, Tool Steel | Center Cutting | 00000000 | 00000 |
10mm | 10mm | 50mm | 100mm | Equal | 30° | Hardened Steel, Iron, Nickel, Stainless Steel, Steel, Titanium, Tool Steel | Center Cutting | 00000000 | 00000 |
Mill Dia. | Shank Dia. | Lg. of Cut | O'all Lg. | Flute Spacing | Helix Angle | For Use On | End Mill Type | Each | |
Aluminum Titanium Nitride (AlTiN) Coated | |||||||||
---|---|---|---|---|---|---|---|---|---|
7 Flute | |||||||||
10mm | 10mm | 22mm | 72mm | Variable | 40° | Bronze, Hardened Steel, Iron, Nickel, Stainless Steel, Steel, Titanium, Tool Steel | Noncenter Cutting | 0000000 | 000000 |
Fast-Cutting Carbide Square End Mills
Variable spacing between the flutes reduces vibration, allowing these end mills to provide fast cuts, smooth finishes, and long tool life. Made of solid carbide, these end mills are harder, stronger, and more wear resistant than high-speed steel and cobalt steel for the longest life and best finish on hard material. Their extreme hardness means they are brittle, so a highly rigid setup, such as a CNC machine, is necessary to prevent the end mill from breaking. A titanium-aluminum-nitride (TiAlN) coating allows them to dissipate heat better than other end mills, especially at high speeds. At high temperatures, the coating creates a layer of aluminum oxide that transfers heat to the chips, keeping the tool cool, even when used without lubrication. They have a square end for milling square slots, pockets, and edges. All are center cutting, allowing plunge cuts into a surface.
For technical drawings and 3-D models, click on a part number.
Mill Dia. | Shank Dia. | Lg. of Cut | Overall Lg. | Flute Spacing | Helix Angle | For Use On | End Mill Type | Each | |
Titanium Aluminum Nitride (TiAlN) Coated | |||||||||
---|---|---|---|---|---|---|---|---|---|
4 Flute | |||||||||
10mm | 10mm | 22mm | 72mm | Variable | 35°-38° | Hardened Steel, Iron, Nickel, Stainless Steel, Steel, Titanium, Tool Steel | Center Cutting | 00000000 | 000000 |
Fast-Cutting Roughing Carbide Square End Mills
Remove large amounts of material quickly without sacrificing tool life. Variable spacing between flutes reduces cutting time and vibration in high-volume jobs.
Made of solid carbide, these end mills are harder, stronger, and more wear resistant than high-speed steel and cobalt steel for the longest life and best finish on hard material. Their extreme hardness means they are brittle, so a highly rigid setup, such as a CNC machine, is necessary to prevent the end mill from breaking. They have a square end for milling square slots, pockets, and edges.
Center-cutting end mills allow plunge cuts into a surface.
End mills with four flutes have better chip clearance than end mills with five flutes, so they’re often used for high-volume, high-speed plunge, slotting, and roughing cuts. Serrations along the cutting edge act as chip breakers, so these end mills can remove large amounts of material at high speeds.
End mills with a titanium-aluminum-nitride (TiAlN) coating and end mills with an aluminum-titanium-nitride (AlTiN) coating dissipate heat better than other end mills, especially at high speeds. At high temperatures, the coating creates a layer of aluminum oxide that transfers heat to the chips, keeping the tool cool, even when used without lubrication.
For technical drawings and 3-D models, click on a part number.
Mill Dia. | Shank Dia. | Lg. of Cut | O'all Lg. | Flute Pitch | Flute Spacing | Helix Angle | For Use On | End Mill Type | Each | |
Titanium Aluminum Nitride (TiAlN) Coated | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
4 Flute | ||||||||||
10mm | 10mm | 22mm | 72mm | Coarse | Variable | 30°-32° | Hardened Steel, Iron, Nickel, Stainless Steel, Steel, Titanium, Tool Steel | Center Cutting | 00000000 | 0000000 |
10mm | 10mm | 30mm | 80mm | Coarse | Variable | 30°-32° | Hardened Steel, Iron, Nickel, Stainless Steel, Steel, Titanium, Tool Steel | Center Cutting | 00000000 | 000000 |
Roughing Carbide Square End Mills
Serrations along the cutting edge act as chip breakers, so these end mills can remove large amounts of material at high speeds. Made of solid carbide, they are harder, stronger, and more wear resistant than high-speed steel and cobalt steel for the longest life and best finish on hard material. Their extreme hardness means they are brittle, so a highly rigid setup, such as a CNC machine, is necessary to prevent the end mill from breaking. They have a square end for milling square slots, pockets, and edges. All are center cutting, allowing plunge cuts into a surface.
Titanium-nitride (TiN) coated end mills have good wear resistance. Titanium-aluminum-nitride (TiAlN) coated end mills dissipate heat better than other end mills, especially at high speeds. At high temperatures, the coating creates a layer of aluminum oxide that transfers heat to the chips, keeping the tool cool, even when used without lubrication.
For technical drawings and 3-D models, click on a part number.
Mill Dia. | Shank Dia. | Lg. of Cut | O'all Lg. | Flute Pitch | Flute Spacing | Helix Angle | For Use On | End Mill Type | Each | |
Titanium Nitride (TiN) Coated | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
4 Flute | ||||||||||
10mm | 10mm | 22mm | 70mm | Coarse | Equal | 30° | Aluminum, Brass, Bronze, Hardened Steel, Iron, Nickel, Stainless Steel, Steel, Titanium, Tool Steel | Center Cutting | 000000000 | 000000 |
Titanium Aluminum Nitride (TiAlN) Coated | ||||||||||
4 Flute | ||||||||||
10mm | 10mm | 22mm | 70mm | Coarse | Equal | 30° | Hardened Steel, Iron, Nickel, Stainless Steel, Steel, Titanium, Tool Steel | Center Cutting | 000000000 | 00000 |
Fast-Cutting Carbide Square End Mills for Stainless Steel and Titanium
Variable spacing between the flutes reduces vibration, allowing these end mills to provide fast cuts, smooth finishes, and long tool life. They have a high helix angle and a wear-resistant coating for excellent shearing and chip removal in stainless steel and titanium. Made of solid carbide, they are harder, stronger, and more wear resistant than high-speed steel and cobalt steel end mills for the longest life and best finish on hard material. Their extreme hardness means they are brittle, so a highly rigid setup, such as a CNC machine, is necessary to prevent the end mill from breaking. End mills have a square end for milling square slots, pockets, and edges. All are center cutting, allowing plunge cuts into a surface.
Aluminum-titanium-nitride (AlTiN) coated end mills get additional wear and temperature resistance from their finish.
Titanium-aluminum-nitride (TiAlN) coated end mills dissipate heat better than other end mills, especially at high speeds. At high temperatures, the coating creates a layer of aluminum oxide that transfers heat to the chips, keeping the tool cool, even when used without lubrication.
For technical drawings and 3-D models, click on a part number.
Mill Dia. | Shank Dia. | Lg. of Cut | Overall Lg. | Flute Spacing | Helix Angle | For Use On | End Mill Type | Each | |
Aluminum Titanium Nitride (AlTiN) Coated | |||||||||
---|---|---|---|---|---|---|---|---|---|
4 Flute | |||||||||
10mm | 10mm | 22mm | 72mm | Variable | 36°-38° | Stainless Steel, Titanium | Center Cutting | 00000000 | 000000 |
Titanium Aluminum Nitride (TiAlN) Coated | |||||||||
5 Flute | |||||||||
10mm | 10mm | 20mm | 80mm | Variable | 45° | Stainless Steel, Titanium | Center Cutting | 00000000 | 00000 |
6 Flute | |||||||||
10mm | 10mm | 22mm | 72mm | Variable | 45° | Stainless Steel, Titanium | Center Cutting | 00000000 | 00000 |
Carbide Square End Mills for Stainless Steel and Titanium
With a wear-resistant coating and high helix angle, these end mills provide excellent shearing and chip removal in stainless steel and titanium. Made of solid carbide, they are harder, stronger, and more wear resistant than high-speed steel and cobalt steel end mills for the longest life and best finish on hard material. Their extreme hardness means they are brittle, so a highly rigid setup, such as a CNC machine, is necessary to prevent the end mill from breaking. The coating allows them to dissipate heat better than other end mills, especially at high speeds. At high temperatures, it creates a layer of aluminum oxide that transfers heat to the chips, keeping the tool cool, even when used without lubrication. End mills have a square end for milling square slots, pockets, and edges. All are center cutting, allowing plunge cuts into a surface.
End mills with five flutes provide a finer finish and operate with less vibration when run at high speeds.
Aluminum-titanium-nitride (AlTiN) coated end mills have a higher percentage of aluminum than titanium-aluminum-nitride (TiAlN) coated end mills.
For technical drawings and 3-D models, click on a part number.
Mill Dia. | Shank Dia. | Lg. of Cut | Overall Lg. | Flute Spacing | Helix Angle | For Use On | End Mill Type | Each | |
Aluminum Titanium Nitride (AlTiN) Coated | |||||||||
---|---|---|---|---|---|---|---|---|---|
5 Flute | |||||||||
10mm | 10mm | 22mm | 70mm | Equal | 45° | Stainless Steel, Titanium | Center Cutting | 0000000 | 000000 |
Carbide Square End Mills for Carbon Fiber, Fiberglass, and Graphite
These end mills have a diamond or diamondlike coating for machining abrasive material, such as carbon fiber, fiberglass, and graphite. Made of solid carbide, they are harder, stronger, and more wear resistant than high-speed steel and cobalt steel for the longest life and best finish. Their extreme hardness means they are brittle, so a highly rigid setup, such as a CNC machine, is necessary to prevent the end mill from breaking. They have a square end for milling square slots, pockets, and edges. All are center cutting, allowing plunge cuts into a surface.
End mills with fewer flutes provide better chip clearance for high-volume, high-speed plunge, slotting, and roughing cuts; end mills with more flutes provide a finer finish and operate with less vibration when run at high speeds.
Diamondlike-carbon (DLC) coated end mills are an economical option for short runs and intermittent use.
For technical drawings and 3-D models, click on a part number.
Mill Dia. | Shank Dia. | Lg. of Cut | Overall Lg. | Flute Spacing | Helix Angle | For Use On | End Mill Type | Each | |
Diamondlike Carbon (DLC) Coated | |||||||||
---|---|---|---|---|---|---|---|---|---|
4 Flute | |||||||||
10mm | 10mm | 30mm | 70mm | Equal | 33° | Carbon Fiber, Fiberglass, Graphite | Center Cutting | 00000000 | 0000000 |
Carbide Square End Mills for Aluminum, Brass, and Bronze
Either an aluminum non-ferrous (ANF) coating or a titanium-carbonitride (TiCN) coating prevents soft material, such as aluminum, brass, and bronze, from accumulating on the cutting edge and creating an uneven finish. Made of solid carbide, these end mills are harder, stronger, and more wear resistant than high-speed steel and cobalt steel for the longest life and best finish. Their extreme hardness means they are brittle, so a highly rigid setup, such as a CNC machine, is necessary to prevent the end mill from breaking. They have a square end for milling square slots, pockets, and edges. All are center cutting, allowing plunge cuts into a surface.
End mills with three flutes provide a finer finish and operate with less vibration when run at high speeds.
For technical drawings and 3-D models, click on a part number.
Mill Dia. | Shank Dia. | Lg. of Cut | Overall Lg. | Flute Spacing | Helix Angle | For Use On | End Mill Type | Each | |
Titanium Carbonitride (TiCN) Coated | |||||||||
---|---|---|---|---|---|---|---|---|---|
3 Flute | |||||||||
10mm | 10mm | 30mm | 70mm | Equal | 45° | Aluminum, Brass, Bronze | Center Cutting | 00000000 | 000000 |
High-Speed Steel Square End Mills
Use these end mills for general purpose milling in most material, such as aluminum, brass, bronze, iron, and steel. They have a square end for milling square slots, pockets, and edges.
End mills with fewer flutes provide better chip clearance for high-volume, high-speed plunge, slotting, and roughing cuts; end mills with more flutes provide a finer finish and operate with less vibration when run at high speeds.
Use uncoated end mills for general purpose milling and short production runs. Use titanium-nitride (TiN) coated end mills for demanding, high-speed jobs in hard material as well as for longer production runs. They’re more wear resistant than uncoated end mills, which means they last longer when run at similar speeds.
Center-cutting end mills allow plunge cuts into a surface.
For technical drawings and 3-D models, click on a part number.
Mill Dia. | Shank Dia. | Lg. of Cut | O'all Lg. | Flute Spacing | Helix Angle | For Use On | End Mill Type | Each | |
Uncoated | |||||||||
---|---|---|---|---|---|---|---|---|---|
2 Flute | |||||||||
10mm | 9.5mm | 20.6mm | 64mm | Equal | 30° | Aluminum, Brass, Bronze, Iron, Plastic, Stainless Steel, Steel | Center Cutting | 0000000 | 000000 |
4 Flute | |||||||||
10mm | 9.5mm | 25.4mm | 68mm | Equal | 30° | Aluminum, Brass, Bronze, Iron, Plastic, Stainless Steel, Steel | Center Cutting | 0000000 | 00000 |
Titanium Nitride (TiN) Coated | |||||||||
2 Flute | |||||||||
10mm | 9.5mm | 20.6mm | 64mm | Equal | 30° | Aluminum, Brass, Bronze, Hardened Steel, Iron, Nickel, Stainless Steel, Steel, Tool Steel | Center Cutting | 0000000 | 00000 |
Roughing High-Speed Steel Square End Mills
Serrations along the cutting edge act as chip breakers, so these end mills can remove large amounts of material at high speeds. They are high-speed steel for general purpose milling in most material, such as aluminum, brass, bronze, iron, and steel. Their square end makes them good for milling square slots and edges.
End mills with fewer flutes provide better chip clearance for high-volume, high-speed plunge, slotting, and roughing cuts; end mills with more flutes provide a finer finish and operate with less vibration when run at high speeds.
Center-cutting end mills allow plunge cuts into a surface.
For technical drawings and 3-D models, click on a part number.
Mill Dia. | Shank Dia. | Lg. of Cut | O'all Lg. | Flute Pitch | Flute Spacing | Helix Angle | For Use On | End Mill Type | Each | |
Uncoated | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
4 Flute | ||||||||||
10mm | 10mm | 22mm | 72mm | Fine | Equal | 30° | Aluminum, Brass, Bronze, Iron, Plastic, Stainless Steel, Steel | Center Cutting | 00000000 | 000000 |
High-Speed Steel Square End Mills with Two Milling Ends
When one end wears out, switch to the opposite end for two times the life of a standard high-speed steel end mill. Made of high-speed steel, these end mills are for general purpose milling in most material, such as aluminum, brass, bronze, iron, and steel. Their square ends make them good for milling square slots, pockets, and edges. All are center cutting, allowing plunge cuts into a surface.
End mills with fewer flutes provide better chip clearance for high-volume, high-speed plunge, slotting, and roughing cuts; end mills with more flutes provide a finer finish and operate with less vibration when run at high speeds.
Use uncoated end mills for general purpose milling and short production runs.
For technical drawings and 3-D models, click on a part number.
Mill Dia. | Shank Dia. | Lg. of Cut | O'all Lg. | Flute Spacing | Helix Angle | For Use On | End Mill Type | Each | |
Uncoated | |||||||||
---|---|---|---|---|---|---|---|---|---|
2 Flute | |||||||||
10mm | 12.7mm | 20.6mm | 105mm | Equal | 30° | Aluminum, Brass, Bronze, Iron, Plastic, Stainless Steel, Steel | Center Cutting | 0000000 | 000000 |
Cobalt Steel Square End Mills
With better heat and wear resistance than high-speed steel, these cobalt steel end mills can run at higher speeds and provide better performance on hard material, such as iron, hardened steel, titanium, and tool steel. They have a square end for milling square slots, pockets, and edges.
End mills with fewer flutes provide better chip clearance for high-volume, high-speed plunge, slotting, and roughing cuts; end mills with more flutes provide a finer finish and operate with less vibration when run at high speeds.
Use uncoated end mills for general purpose milling and short production runs. Use titanium-carbonitride (TiCN) coated end mills for demanding, high-speed jobs in hard material as well as for longer production runs. They have a hard, smooth finish that resists chipping and wear and prevents material from accumulating on the cutting edge. They’re especially good for use in aluminum.
Center-cutting end mills allow plunge cuts into a surface.
For technical drawings and 3-D models, click on a part number.
Mill Dia. | Shank Dia. | Lg. of Cut | O'all Lg. | Flute Spacing | Helix Angle | For Use On | End Mill Type | Each | |
Uncoated | |||||||||
---|---|---|---|---|---|---|---|---|---|
2 Flute | |||||||||
10mm | 10mm | 22mm | 72mm | Equal | 30° | Aluminum, Brass, Bronze, Hardened Steel, Iron, Nickel, Plastic, Stainless Steel, Steel, Titanium, Tool Steel | Center Cutting | 0000000 | 000000 |
4 Flute | |||||||||
10mm | 10mm | 22mm | 72mm | Equal | 30° | Aluminum, Brass, Bronze, Hardened Steel, Iron, Nickel, Plastic, Stainless Steel, Steel, Titanium, Tool Steel | Center Cutting | 0000000 | 00000 |
Titanium Carbonitride (TiCN) Coated | |||||||||
4 Flute | |||||||||
10mm | 10mm | 22mm | 72mm | Equal | 30° | Aluminum, Brass, Bronze, Hardened Steel, Iron, Nickel, Plastic, Stainless Steel, Steel, Titanium, Tool Steel | Center Cutting | 0000000 | 00000 |
Cobalt Steel Square End Mills with Two Milling Ends
When one end wears out, switch to the opposite end for two times the life of a standard cobalt steel end mill. With better heat and wear resistance than high-speed steel, these cobalt steel end mills can run at higher speeds and provide better performance on hard material, such as iron, hardened steel, titanium, and tool steel. Their square ends make them good for milling square slots, pockets, and edges. All are center cutting, allowing plunge cuts into a surface.
End mills with four flutes provide a finer finish and operate with less vibration when run at high speeds.
For technical drawings and 3-D models, click on a part number.
Mill Dia. | Shank Dia. | Lg. of Cut | O'all Lg. | Flute Spacing | Helix Angle | For Use On | End Mill Type | Each | |
Uncoated | |||||||||
---|---|---|---|---|---|---|---|---|---|
4 Flute | |||||||||
10mm | 12.7mm | 25.4mm | 105mm | Equal | 30° | Aluminum, Brass, Bronze, Hardened Steel, Iron, Nickel, Plastic, Stainless Steel, Steel, Titanium, Tool Steel | Center Cutting | 0000000 | 000000 |
Carbide Ball End Mills
Ball Cut Style | 2 Flute |
4 Flute |
For longer tool life and a better finish in general purpose milling applications, these solid carbide end mills are harder, stronger, and more wear resistant than high-speed steel and cobalt steel end mills. Their extreme hardness means they are brittle, so a highly rigid setup, such as a CNC machine, is necessary to prevent the end mill from breaking. They have a ball end for milling rounded slots, slopes, and contours. All are center cutting, allowing plunge cuts into a surface.
End mills with fewer flutes provide better chip clearance for high-volume, high-speed plunge, slotting, and roughing cuts; end mills with more flutes provide a finer finish and operate with less vibration when run at high speeds.
Use uncoated end mills for general purpose milling and short production runs.
For technical drawings and 3-D models, click on a part number.
Mill Dia. | Shank Dia. | Lg. of Cut | Overall Lg. | Flute Spacing | Helix Angle | For Use On | End Mill Type | Each | |
Uncoated | |||||||||
---|---|---|---|---|---|---|---|---|---|
2 Flute | |||||||||
10mm | 10mm | 22mm | 70mm | Equal | 30° | Aluminum, Brass, Bronze, Fiberglass, Hardened Steel, Iron, Nickel, Plastic, Stainless Steel, Steel, Titanium, Tool Steel | Center Cutting | 00000000 | 000000 |
Mill Dia. | Shank Dia. | Lg. of Cut | Overall Lg. | Flute Spacing | Helix Angle | For Use On | End Mill Type | Each | |
Uncoated | |||||||||
---|---|---|---|---|---|---|---|---|---|
4 Flute | |||||||||
10mm | 10mm | 22mm | 70mm | Equal | 30° | Aluminum, Brass, Bronze, Fiberglass, Hardened Steel, Iron, Nickel, Plastic, Stainless Steel, Steel, Titanium, Tool Steel | Center Cutting | 00000000 | 000000 |
Carbide Ball End Mills for Tool Steel, Hardened Steel, and Iron
Flutes have a low helix angle to provide the cutting forces required for difficult-to-machine material, such as hardened steel and iron. Made of solid carbide, these end mills are harder, stronger, and more wear resistant than high-speed steel and cobalt steel for the longest life and best finish. Their extreme hardness means they are brittle, so a highly rigid setup, such as a CNC machine, is necessary to prevent the end mill from breaking. A titanium-aluminum-nitride (TiAlN) coating allows them to dissipate heat better than other end mills, especially at high speeds. At high temperatures, the coating creates a layer of aluminum oxide that transfers heat to the chips, keeping the tool cool, even when used without lubrication. End mills have a ball end for milling rounded slots, slopes, and contours. All are center cutting, allowing plunge cuts into a surface.
For technical drawings and 3-D models, click on a part number.
For Max. Hardness Rockwell C52 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Mill Dia. | Shank Dia. | Lg. of Cut | Overall Lg. | Flute Spacing | Helix Angle | For Use On | End Mill Type | Each | |
Titanium Aluminum Nitride (TiAlN) Coated | |||||||||
2 Flute | |||||||||
10mm | 10mm | 10mm | 82mm | Equal | 15° | Tool Steel, Hardened Steel, Iron | Center Cutting | 0000000 | 0000000 |
High-Speed Steel Tapered Square End Mills
Use these end mills for general purpose work in most material, such as aluminum, brass, bronze, iron, and steel. Also known as taper degree end mills, they're often used to machine angled slots in dies and molds. All are center cutting, allowing plunge cuts into a surface.
End mills with three flutes provide better chip clearance for high-volume, high-speed plunge, slotting, and roughing cuts.
For technical drawings and 3-D models, click on a part number.
Taper Angle per Side | Mill Dia. | Max. Taper Dia. | Shank Dia. | Lg. of Cut | Overall Lg. | Flute Spacing | For Use On | End Mill Type | Each | |
Uncoated | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
3 Flute | ||||||||||
1/2° | 10mm | 11mm | 12mm | 60mm | 110mm | Equal | Aluminum, Brass, Bronze, Iron, Plastic, Stainless Steel, Steel | Center Cutting | 00000000 | 000000 |
Carbide Corner-Rounding End Mills with Two Milling Ends
When one end wears out, switch to the opposite end for two times the life of a standard carbide end mill. Made of solid carbide, these end mills are harder, stronger, and more wear resistant than high-speed steel for the longest life and best finish on hard material. Their extreme hardness means they are brittle, so a highly rigid setup, such as a CNC machine, is necessary to prevent the end mill from breaking. Use them to round sharp corners on the edge of your workpiece.
For technical drawings and 3-D models, click on a part number.
Cut Radius | Tip Dia. | Mill Dia. | Shank Dia. | Overall Lg. | Flute Spacing | For Use On | Each | |
Uncoated | ||||||||
---|---|---|---|---|---|---|---|---|
3 Flute | ||||||||
2mm | 2.9mm | 10mm | 10mm | 64mm | Equal | Aluminum, Brass, Bronze, Fiberglass, Hardened Steel, Iron, Nickel, Plastic, Stainless Steel, Steel, Titanium, Tool Steel | 0000000 | 000000 |
2.5mm | 2.9mm | 10mm | 10mm | 64mm | Equal | Aluminum, Brass, Bronze, Fiberglass, Hardened Steel, Iron, Nickel, Plastic, Stainless Steel, Steel, Titanium, Tool Steel | 0000000 | 00000 |
3mm | 2.9mm | 10mm | 10mm | 64mm | Equal | Aluminum, Brass, Bronze, Fiberglass, Hardened Steel, Iron, Nickel, Plastic, Stainless Steel, Steel, Titanium, Tool Steel | 0000000 | 00000 |
Carbide Chamfer End Mills
Chamfer Cut Style | 2 Flute |
4 Flute |
Made of solid carbide, these end mills are harder, stronger, and more wear resistant than high-speed steel and cobalt steel for the longest life and best finish on hard material. Their extreme hardness means they are brittle, so a highly rigid setup, such as a CNC machine, is necessary to prevent the end mill from breaking. They have an angled profile for making chamfer, bevel, and other angled cuts.
End mills with two flutes provide better chip clearance for high-volume, high-speed roughing cuts. End mills with four flutes provide a finer finish and operate with less vibration when run at high speeds.
Use uncoated end mills for general purpose milling and short production runs. Use titanium-aluminum-nitride (TiAIN) coated end mills for demanding, high-speed jobs in hard material as well as for longer production runs. They’re more wear resistant than uncoated end mills. They also dissipate heat better than other end mills, especially at high speeds. At high temperatures, this coating creates a layer of aluminum oxide that transfers heat to the chips, keeping the tool cool, even when used without lubrication.
For technical drawings and 3-D models, click on a part number.
Mill Dia. | Shank Dia. | Lg. of Cut | Overall Lg. | Flute Spacing | For Use On | Each | |
Uncoated | |||||||
---|---|---|---|---|---|---|---|
2 Flute—60° Cutting Angle | |||||||
10mm | 10mm | 8.66mm | 70mm | Equal | Aluminum, Brass, Bronze, Fiberglass, Hardened Steel, Iron, Nickel, Plastic, Stainless Steel, Steel, Titanium, Tool Steel | 00000000 | 000000 |
2 Flute—82° Cutting Angle | |||||||
10mm | 10mm | 5.75mm | 70mm | Equal | Aluminum, Brass, Bronze, Fiberglass, Hardened Steel, Iron, Nickel, Plastic, Stainless Steel, Steel, Titanium, Tool Steel | 00000000 | 00000 |
2 Flute—90° Cutting Angle | |||||||
10mm | 10mm | 5mm | 70mm | Equal | Aluminum, Brass, Bronze, Fiberglass, Hardened Steel, Iron, Nickel, Plastic, Stainless Steel, Steel, Titanium, Tool Steel | 00000000 | 00000 |
4 Flute—60° Cutting Angle | |||||||
10mm | 10mm | 8.66mm | 70mm | Equal | Aluminum, Brass, Bronze, Fiberglass, Hardened Steel, Iron, Nickel, Plastic, Stainless Steel, Steel, Titanium, Tool Steel | 00000000 | 00000 |
4 Flute—82° Cutting Angle | |||||||
10mm | 10mm | 5.75mm | 70mm | Equal | Aluminum, Brass, Bronze, Fiberglass, Hardened Steel, Iron, Nickel, Plastic, Stainless Steel, Steel, Titanium, Tool Steel | 00000000 | 00000 |
4 Flute—90° Cutting Angle | |||||||
10mm | 10mm | 5mm | 70mm | Equal | Aluminum, Brass, Bronze, Fiberglass, Hardened Steel, Iron, Nickel, Plastic, Stainless Steel, Steel, Titanium, Tool Steel | 00000000 | 00000 |
Titanium Aluminum Nitride (TiAlN) Coated | |||||||
2 Flute—60° Cutting Angle | |||||||
10mm | 10mm | 8.66mm | 70mm | Equal | Aluminum, Brass, Bronze, Fiberglass, Hardened Steel, Iron, Nickel, Plastic, Stainless Steel, Steel, Titanium, Tool Steel | 00000000 | 00000 |
2 Flute—82° Cutting Angle | |||||||
10mm | 10mm | 5.75mm | 70mm | Equal | Aluminum, Brass, Bronze, Fiberglass, Hardened Steel, Iron, Nickel, Plastic, Stainless Steel, Steel, Titanium, Tool Steel | 00000000 | 00000 |
2 Flute—90° Cutting Angle | |||||||
10mm | 10mm | 5mm | 70mm | Equal | Aluminum, Brass, Bronze, Fiberglass, Hardened Steel, Iron, Nickel, Plastic, Stainless Steel, Steel, Titanium, Tool Steel | 00000000 | 00000 |
4 Flute—60° Cutting Angle | |||||||
10mm | 10mm | 8.66mm | 70mm | Equal | Aluminum, Brass, Bronze, Fiberglass, Hardened Steel, Iron, Nickel, Plastic, Stainless Steel, Steel, Titanium, Tool Steel | 00000000 | 00000 |
4 Flute—82° Cutting Angle | |||||||
10mm | 10mm | 5.75mm | 70mm | Equal | Aluminum, Brass, Bronze, Fiberglass, Hardened Steel, Iron, Nickel, Plastic, Stainless Steel, Steel, Titanium, Tool Steel | 00000000 | 00000 |
4 Flute—90° Cutting Angle | |||||||
10mm | 10mm | 5mm | 70mm | Equal | Aluminum, Brass, Bronze, Fiberglass, Hardened Steel, Iron, Nickel, Plastic, Stainless Steel, Steel, Titanium, Tool Steel | 00000000 | 00000 |
Carbide Drill/Mill End Mills
Made of solid carbide, these end mills are harder, stronger, and more wear resistant than cobalt steel for the longest life and best finish on hard material. Their extreme hardness means they are brittle, so a highly rigid setup, such as a CNC machine, is necessary to prevent the end mill from breaking. A 90° pointed tip allows them to be used for drilling as well as for slotting, profiling, and chamfering cuts. All are center cutting, allowing plunge cuts into a surface.
End mills with four flutes provide a finer finish and operate with less vibration when run at high speeds.
Use uncoated end mills for general purpose milling and short production runs.
Mill Dia. | Shank Dia. | Lg. of Cut | Overall Lg. | Flute Spacing | Point Angle | Helix Angle | For Use On | End Mill Type | Each | |
Uncoated | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
4 Flute | ||||||||||
10mm | 10mm | 22mm | 70mm | Equal | 90° | 30° | Aluminum, Brass, Bronze, Fiberglass, Hardened Steel, Iron, Nickel, Plastic, Stainless Steel, Steel, Titanium, Tool Steel | Center Cutting | 00000000 | 000000 |