We will reply to your message within an hour.
More
Use these valves in general purpose applications such as those with water, oil, air, and inert gas.
Extend your reach in hard-to-access areas—turn these valves on and off using a square ratchet to grasp the hole at the end of the handle. Use with water, oil, air, and inert gas.
An easy-to-read flow-indicating handle shows the percentage the valve is open. These valves are for use with water, oil, inert gas, and steam.
Attach a gauge to the side port on these valves to monitor pressure, temperature, and other measurements in your line. Use with water and air.
For installation through thick insulation, these valves have an extra-long stem.
Maintain and repair these valves without unthreading pipe connections. They have a three-piece bolted body that disassembles inline for access to internal components. Use with water, oil, air, inert gas, and steam.
These valves are rated for at least three times the pressure of standard threaded valves. Use with water, oil, air, inert gas, and steam.
Often used in high-purity applications, such as oxygen service, these valves come cleaned and bagged. Use with water, oil, inert gas, and steam.
For fast installation and removal from pipelines, these valves have a union fitting that disassembles into multiple pieces. They’re for use with water, oil, air, inert gas, and steam.
Use these valves with water, air, and inert gas.
A threaded union on these valves makes them easy to install and remove without disrupting your line.
Bolt these valves to ANSI flanges.
Also known as wafer ball valves, these combine the slim body of a butterfly valve with the high flow rates of a flanged ball valve. Bolt these valves to ANSI flanges—they meet ASME standards for dimensions, material, and pressure-temperature rating. Use with water, oil, air, steam and inert gas such as helium.
Bolt these valves to pipe and pump flanges to start and stop flow before pump maintenance without draining your system.
Made of plastic, these valves are a lightweight alternative to metal valves. Union fittings connect the flanges to the valve—with a quick turn, you can install and remove the valve without having to bolt and unbolt the flange each time.
Clean and maintain these valves without removing welded connections. They have a three-piece bolted body that disassembles inline for easy access to internal components. Use with water, oil, air, inert gas, and steam.
Often used for oxygen service and other high-purity applications, these valves come cleaned and bagged. Insert unthreaded pipe into the socket ends and weld to create a permanent, leak-tight connection. For easy maintenance, they have a three-piece bolted body that disassembles inline so you can access internal components without removing welded connections.
Insert unthreaded pipe into the socket ends and bond with primer and cement to create a permanent, leak-tight connection. The socket ends of these valves are lined with PVC for bonding to PVC pipe.
Weld these valves to unthreaded metal pipe for a permanent, flush connection that permits smooth flow through a line. Use with water, oil, inert gas, and steam.
For quick and easy access to your line, these valves attach to pipe with a clamp that fits around their grooved ends. They’re also known as Victaulic valves.
With a fluoroelastomer seal and a CPVC body, these valves can withstand aggressive and corrosive solutions in chemical-processing applications.
For fast installation and removal from pipelines, these valves have union fittings that disassemble into multiple pieces. All have a fluoroelastomer seal and a plastic body that can stand up to aggressive and corrosive solutions in chemical-processing applications.
No need to remove these valves from your line to access their internal components—the three-piece bolted body comes apart. Ideal in chemical-processing applications, the seal and polypropylene body stand up to aggressive and corrosive solutions.
Streamline your installation and removal process. These valves give you the leak-tight permanent connection of a socket connect with the ease of fittings that come apart.
Insert unthreaded pipe into the socket ends and bond with primer and cement to create a permanent, leak-tight connection. These valves have a fluoroelastomer seal and a plastic body that can withstand aggressive and corrosive solutions in chemical-processing applications.
Bolt these valves to ANSI flanges—they meet ASME dimensional standards. They have a plastic body and a seal that withstand aggressive and corrosive solutions in chemical-processing applications.
For use in drinking water systems, these valves meet NSF/ANSI 61.
No need to completely remove these valves from your line for cleaning and repairs. The bolted three-piece body comes apart, so you can easily access their internal components.
Made of plastic, these valves won’t pit or corrode on the inside like metal valves, and they’re lighter in weight. They meet NSF/ANSI 61 for use with drinking water.
Disassemble the union fittings on these valves for fast installation and removal from your pipeline. All meet NSF/ANSI 61 for use with drinking water.
Insert unthreaded pipe into the socket ends and bond with primer and cement to create a permanent, leak-tight connection. These valves meet NSF/ANSI 61, which means they’re safe to use with drinking water systems.
Ideal for lines that need frequent maintenance, these valves have union fittings that disassemble quickly for removal. They meet NSF/ANSI 61 for use with drinking water.
For a permanent, leak-tight connection that doesn’t require heat or soldering, these valves have press-connect fittings that crimp to metal tubing. Install them with a press-connect crimping tool. These valves meet NSF/ANSI 61 for use in drinking water systems.
Bolt these valves onto ANSI flanges. They meet NSF/ANSI standard 61, so they’re safe for use in drinking water systems.
Protect personnel and equipment in the presence of diesel fuel, fuel oil, gasoline, and kerosene. Fire-tested to meet American Petroleum Institute (API) 607, Edition 4, these valves are designed to securely isolate fluid and prevent the spread of fire.
No need to completely remove these valves from your line for servicing. The bolted three-piece body comes apart, so you can easily access their internal components. Fire-tested to meet American Petroleum Institute (API) 607, these valves securely isolate diesel fuel, fuel oil, kerosene, and gasoline to prevent the spread of fire.
Keep your worksite safe when working with diesel fuel, fuel oil, gasoline, and kerosene. Fire-tested to meet American Petroleum Institute (API) 607, these valves are designed to securely isolate fluid and prevent the spread of fire.
Install these valves to start and stop the flow of diesel fuel, fuel oil, kerosene, and gasoline. Fire-tested to meet American Petroleum Institute (API) 607, these valves are designed to securely isolate fluid and prevent the spread of fire. Insert unthreaded pipe into the socket ends and weld to create a permanent, leak-tight connection.
Install these low-profile valves in low-clearance pipelines for natural gas, propane, and butane.
The bolted-body design provides strength for a tight seal in vacuum conditions up to 29.9” Hg. Use these valves in vacuum applications, such as coating, heat treating, leak testing, and analyzing gases.
Use these valves in cryogenic systems to control the flow of liquid nitrogen, carbon dioxide, and argon.
Designed to withstand extremely cold liquid gases, these valves are ideal for liquid nitrogen cooling systems and liquified gas storage. Insert unthreaded pipe into the socket ends and weld to create a permanent, leak-tight connection.
The three-piece bolted body comes apart for access to internal components without unthreading pipe connections and removing the valve from your line.
For use in general purpose applications with water, oil, and inert gas.
Their ball-valve design allows these valves to handle three times the flow of butterfly valves.
Also known as actuated ball valves, these provide higher flow rates than other air-driven valves.
With a ball-valve design, these valves can handle three times the flow of butterfly valves.
For general purpose applications with water, oil, and inert gas.
Maintain and repair these valves without unthreading pipe connections. They have a three-piece bolted body that disassembles inline for access to internal components.
With a slimmer motor than other motor-driven valves, these fit in tight spots.
Separate the union fittings on each end of these valves for fast installation and removal from pipelines.
Their ball valve design allows these valves to handle three times the flow of butterfly valves.
These valves have threaded NPT connections.
Insert unthreaded pipe into the socket ends and bond with PVC primer and cement to create a permanent, leak-tight connection.
For three times the flow of butterfly valves, these have a ball valve design.
All valves have threaded NPT connections.
Also known as proportional V-ball valves, these have a motor that adjusts and regulates flow in applications with higher flow rates and pressures than solenoid valves. As you increase the intensity of the electrical signal, the motor opens the valve, moving a ball with a V-cut opening that proportionately allows more flow as the valve opens. They're often integrated into PLC systems for automatic control over the valve position based on system conditions.
These valves divert flow between ports. Use with water, oil, air, and inert gas.
For easy installation and removal from pipelines, all ends on these valves have union fittings that disassemble into multiple pieces. Use with water. Valves divert flow between ports.
Bolt these valves to flanges to divert flow between ports in flanged pipelines. They’re for use with water, oil, air, and inert gas.
Perform valve maintenance without unthreading pipe connections. These valves have a three-piece bolted body that comes apart for inline access to internal components. The fluoroelastomer seal and glass-filled polypropylene body can withstand aggressive and corrosive solutions for diverting flow in chemical-processing applications.
For easy installation and removal from pipelines, all ends on these valves have union fittings that disassemble into multiple pieces. Their fluoroelastomer seal and plastic body can withstand aggressive and corrosive solutions for diverting flow between ports in chemical-processing applications.
To divert flow between ports in drinking water lines, these valves meet NSF/ANSI 61.
For use with threaded pipe, these valves have NPT connections. Use them with water, oil, air, and inert gas. All operate on compressed air to automatically divert flow between ports more quickly than motor-driven valves. You must control the air to the actuator using either an electric pilot valve or a manual on/off valve.
Bolt these valves to flanges. Use them with water, oil, air, and inert gas. All operate on compressed air to automatically divert flow between ports more quickly than motor-driven valves. You must control the air to the actuator using either an electric pilot valve or a manual on/off valve.
The motor on these valves can handle diverting applications with high flow rates and pressures. They operate on electricity to automatically divert flow between ports.
Automatically or manually start and stop flow in your line with these valve bodies, which attach to your actuator.
Attach these valve bodies to your actuator to automatically or manually control flow in your line.
Thread these balancing valves onto pipe—they help you measure the pressure differential across the valve as well as change the flow rate to components in your system. Sometimes called circuit setters, they’re used in HVAC systems and other systems that require even flow distribution.
Start and stop flow with a quarter turn of the handle. Also known as ball valves.
Lock the handle using a padlock.
Made of polypropylene, these couplings are lighter in weight than metal cam-and-groove couplings. Also known as dry disconnects and double shut-off couplings, they have a shut-off valve in the plug and the socket for minimal fluid loss when disconnecting your hose line.