We will reply to your message within an hour.
More
Use these valves in general purpose applications such as those with water, oil, air, and inert gas.
Extend your reach in hard-to-access areas—turn these valves on and off using a square ratchet to grasp the hole at the end of the handle. Use with water, oil, air, and inert gas.
An easy-to-read flow-indicating handle shows the percentage the valve is open. These valves are for use with water, oil, inert gas, and steam.
For installation through thick insulation, these valves have an extra-long stem. They’re for use with water, oil, air, inert gas, and steam.
A built-in strainer traps debris and allows you to replace the screen without disconnecting your pipeline.
Install these low-profile valves in tight spots. Use with water, oil, air, and inert gas.
These valves can handle at least twice the pressure of other compact valves. Install them in tight spots. Use with water, oil, air, and inert gas.
Maintain and repair these valves without unthreading pipe connections. They have a three-piece bolted body that disassembles inline for access to internal components. Use with water, oil, air, inert gas, and steam.
For installation in instrument panels, these valves have threads and a hex nut below the handle. They’re for use with water, oil, air, and inert gas.
These valves are rated for at least three times the pressure of standard threaded valves. Use with water, oil, air, inert gas, and steam.
For fast installation and removal from pipelines, these valves have a union fitting that disassembles into multiple pieces. They’re for use with water, oil, air, inert gas, and steam.
Use these valves with water, air, and inert gas.
Install these low-profile valves in tight spots. They are for use with water, oil, air, and inert gas.
Plastic provides a lightweight and economical alternative to metal. All valves have barbs that grip onto tubing for a secure hold. They’re for use with water, oil, air, and inert gas.
Metal provides more durability than plastic. These valves have barbed fittings that grip onto tubing for a secure hold. Use them with water and air.
Clean and maintain these valves without removing welded connections. They have a three-piece bolted body that disassembles inline for easy access to internal components. Use with water, oil, air, inert gas, and steam.
Insert tubing into the fittings on these valves—no heat, solder, or flux required. They’re for use with water, oil, air, and inert gas.
For more durability than plastic valves, these are made of metal. A compression sleeve bites into tubing as you tighten the nut, forming a strong seal. Use these valves with water, oil, air, inert gas, and steam.
For chemical-processing applications in confined areas, these valves have an EPDM seal and a PVC or CPVC body to withstand aggressive and corrosive solutions and a low-profile handle to fit in tight spots.
There’s no need to unbolt these valves for cleaning—remove the valve handle and slide the valve apart for inline access to internal components. Also known as elliptical valves, they have a fluoroelastomer seal and a polypropylene body to withstand aggressive and corrosive solutions in chemical-processing applications.
Insert tubing into the fittings on these valves—no heat, solder, or flux required. To withstand aggressive and corrosive solutions, they have a chemical-resistant fluoroelastomer seal and a plastic body.
For use in drinking water systems, these valves meet NSF/ANSI 61.
Protect personnel and equipment in the presence of diesel fuel, fuel oil, gasoline, and kerosene. Fire-tested to meet American Petroleum Institute (API) 607, Edition 4, these valves are designed to securely isolate fluid and prevent the spread of fire.
Insert tubing into the push-to-connect fittings on these valves—no heat, solder, or flux required. They meet NSF/ANSI 51 for safe use with food.
These valves have barbs that grip onto tubing, providing a secure hold. All meet NSF/ANSI 18 for use with manual food and beverage dispensing equipment.
The bolted-body design provides strength for a tight seal in vacuum conditions up to 29.9” Hg. Use these valves in vacuum applications, such as coating, heat treating, leak testing, and analyzing gases.
For use in general purpose applications with water, oil, and inert gas.
Limit wear and damage in high-cycling applications—these valves have additional seals that prevent leakage to reduce maintenance time.
These valves divert flow between ports. Use with water, oil, air, and inert gas.
Threads and a hex nut below the handle let you install these valves through instrument panels. They are for use with water, oil, air, and inert gas. All divert flow between ports.
There’s no need to unbolt these valves for cleaning—remove the handle and slide the valve apart for inline access to internal components. Also known as elliptical valves, they have a fluoroelastomer seal and a polypropylene body for diverting flow in chemical-processing applications.
For use with threaded pipe, these valves have NPT connections. Use them with water, oil, air, and inert gas. All operate on compressed air to automatically divert flow between ports more quickly than motor-driven valves. You must control the air to the actuator using either an electric pilot valve or a manual on/off valve.
The motor on these valves can handle diverting applications with high flow rates and pressures. They operate on electricity to automatically divert flow between ports.
Start and stop flow with a quarter turn of the handle. Also known as ball valves.
Lock the handle using a padlock.
Turn the handle to direct flow between ports.