We will reply to your message within an hour.
Create one action with these valves, such as extending a cylinder.
Often used to extend and then retract a cylinder at different speeds, these valves create two actions and have two exhaust ports, which allows you to control the speed of each action by attaching a flow control valve to each exhaust port. Also known as 4-way and 5/2 valves.
In the off position, these valves exhaust all air pressure, allowing the equipment to return to the neutral position. They create two actions and have two exhaust ports, which allows you to control the speed of each action by attaching a flow control valve to each exhaust port. Also known as 4-way and 5/3 exhaust center valves.
Control these valves with one hand. Also known as 4/2 valves, they create two actions, such as extending and then retracting a double-acting cylinder.
A simple automation solution that requires no programming, these valves are activated when an object, such as a box rolling on a conveyor, pushes the actuator. They create one action, such as extending a cylinder. Also known as 3-way and 3/2 valves.
Often used to extend and then retract a cylinder at different speeds, these valves create two actions and have two exhaust ports, which allows you to control the speed of each action by attaching a flow control valve to each exhaust port. They activate when an object, such as a box rolling on a conveyor, pushes the actuator. Also known as 4-way and 5/2 valves.
These valves create one action, such as extending a cylinder. Apply voltage to the electrical connection to actuate. They're also known as 3/2 valves.
Run through equipment cycles up to 30% faster than with standard valves. Also known as 3/2 valves, they create one action, such as extending a cylinder. Apply voltage to the electrical connection to actuate.
Mount valves to a single-station base or to a manifold, which allows a single pressure source for multiple valves, then add or remove valves as your needs change.
Air pressure must be supplied to both inlets before the output port will open, allowing air flow to downstream components. Also known as "and" valves.
Also known as shuttle valves and "or" valves, these valves select between the higher of two inlet pressures to power one outlet port.
Designed to be mounted inline, these valves can be installed in an easy-to-reach location along your line. They control the speed of air-powered equipment by adjusting the volume of airflow.
Mount these valves directly to cylinder ports, eliminating additional tubing between the cylinder and valve for better control than inline valves. They control the speed of air-powered equipment by adjusting the volume of airflow.
A swiveling outlet port on these valves makes connections from any direction. They control the speed of air-powered equipment by adjusting the volume of airflow.
A numeric indicator provides a relative measure of airflow, similar to the volume dial on a speaker, so it's easy to set the same flow rate with each use. Mount them directly to cylinder ports, eliminating additional tubing between the cylinder and valve for better control than inline valves. They control the speed of air-powered equipment by adjusting the volume of airflow.
Designed to be mounted inline, these valves can be placed in an easy-to-reach location along your line to control the speed of air-powered equipment by adjusting the volume of airflow. A numeric indicator provides a relative measure of airflow, similar to the volume dial on a speaker, so it's easy to set the same flow rate with each use.
A fine-adjustment dial allows tighter control of airflow and cylinder speed than other flow control valves. They control the speed of air-powered equipment by adjusting the volume of airflow entering or exiting.
Prevent accidental airflow changes with these valves, which require an adjustment tool to alter their flow rate. They control the speed of air-powered equipment by adjusting the volume of airflow.
These valves handle pressure up to 265 psi. They control the speed of air-powered equipment by adjusting the volume of airflow entering or exiting.
Designed to be mounted inline, these valves can be placed in easy-to-reach locations. Made of plastic and stainless steel parts, they have excellent corrosion resistance. They control the speed of air-powered equipment by adjusting the volume of airflow.
Mount these valves directly to cylinder ports, eliminating additional tubing between the cylinder and valve for better control than inline valves. Made of plastic and stainless steel parts, they have excellent corrosion resistance. They control the speed of air-powered equipment by adjusting the volume of airflow.
Prevent damage to your equipment by limiting startup airflow and then gradually raising the airflow rate to operating levels.
Protect air-powered equipment in emergency shut-off situations—when system pressure drops, these valves automatically close to stop cylinder motion, even at mid-stroke. They control the speed of air-powered equipment by adjusting the volume of airflow entering or exiting.
Made of PBT, these plastic valves are more corrosion resistant than valves made of aluminum or nylon. A single dial adjusts airflow equally in both directions, controlling the extension and retraction speed of an air cylinder at the same time.
Adjust airflow equally in both directions. These valves regulate the speed of airflow as it enters and exits equipment. They're often used to control the extension and retraction speed of an air cylinder at the same time.
Quickly vent exhaust air to the atmosphere or divert it to another place in your system to speed up the movement of equipment. The 90° elbow shape allows you to install them in tight spaces. Also known as quick exhaust valves.
Control the flow of exhaust air while also regulating the exhaust air speed. These valves dump exhaust air to the atmosphere without routing it back through a directional control valve. The 90° elbow shape allows you to install them in tight spaces. Also known as quick exhaust valves.
A muffler reduces exhaust noise. Valves allow airflow into your equipment and then quickly dump exhaust air to the atmosphere without routing it back through a directional control valve to speed up the movement of equipment. Also known as quick exhaust valves.
Install these valves in the exhaust ports of air directional control valves to control exhaust air speed without needing access to your cylinder.
When system pressure reaches the maximum, these valves open and send an air signal to turn on a downstream device such as a discharge valve or throttle. They close and send a signal to turn the device off when pressure drops.
Also known as blocking valves, these valves allow airflow while an air signal is applied to the air pilot. When the signal stops, the valve closes, trapping air in the system.
Also known as solenoid valves, these valves are operated by an electrical signal to turn airflow on or off.
Slide the knurled sleeve in one direction to stop flow, and slide it back to start flow again.
These valves have a muffler to reduce exhaust noise. A padlock locks the handle in the shut-off position so you can disconnect air tools safely.
A padlock locks the handle of these valves in the shut-off position so you can disconnect air tools safely.
These valves open to allow flow in one direction and close when flow stops or reverses direction.
With 10-32 UNF threads and a body less than 3/4” long, these valves are often used to control flow in miniature pipelines. They’re rated for use with water, oil, air, and inert gas.
Install these valves in tight spots, such as where pipelines are crowded together. They’re less than half as long as standard threaded valves and one-third shorter in height. Use with water, oil, air, and inert gas.
These valves handle twice the pressure of other compact valves. Install them in tight spots, such as where pipelines are crowded together. Use with water, oil, air, and inert gas.
Control the flow of your line while it’s protected behind an instrument panel. These valves have threads and a hex nut below the handle, so it sticks out of your panel for access. They’re for use with water, oil, air, and inert gas.
Fit these short and slim valves in control boxes, panels, and other tight spots. Made of plastic, they won’t pit or corrode on the inside like metal valves, and they’re lighter in weight for easy handling.
Use these valves with water, air, and inert gas.
Control flow through any garden hose—the threads on these valves are universally compatible with garden hose connections. Made of PVC, they’re a lightweight and corrosion resistant alternative to metal valves.
Insert tubing into the fittings on these valves—no heat, solder, or flux required. They’re for use with water, oil, air, and inert gas.
Plastic provides a lightweight and economical alternative to metal. All valves have barbs that grip onto tubing for a secure hold. They’re for use with water, oil, air, and inert gas.
Use these plastic valves for a lightweight and economical alternative to metal. They have a compression sleeve that bites into tubing as you tighten the nut, forming a strong seal. Use with water, air, and inert gas.
Easily access the handle of these valves while protecting your line behind an instrument panel. Threads and a hex nut below the handle allow you to install these valves in instrument panels. For extra gripping power and a strong seal, they have Yor-Lok fittings with two sleeves that bite into tubing as you tighten the nut. All are compatible with Swagelok®, Let-Lok, and Parker A-Lok fittings.
To withstand aggressive and corrosive solutions in miniature chemical-processing pipelines, these tiny valves have a chemical-resistant fluoroelastomer seal and a corrosion-resistant 303 stainless steel body.
For chemical-processing applications in confined areas, these valves have a low-profile handle to fit in tight spots. A rubber seal and a plastic body stand up to aggressive, corrosive solutions.
Less than half the size of our other compact valves, these have small pipe connections for miniature lines.
With a slimmer motor than other motor-driven valves, these fit in tight spots.
About half the height of our other versa-mount valves, these fit in tight spots.
With a low-profile body and a narrow port-to-port length, these valves fit in tight spots. Barbs grip onto tubing, providing a secure hold. These valves are for use with water, oil, air, and inert gas. Turn the handle to adjust flow in small increments for metering, sampling, and other applications requiring fine flow control.
Available in smaller pipe sizes than other solenoid flow-adjustment valves, these are often used with gas chromatography equipment and analytical instrumentation. They adjust and regulate flow based on the intensity of the electrical signal into the valve. They're often integrated into PLC systems for automatic control over the valve position based on system conditions.
Lower profile than other solenoid diverting valves and available in smaller pipe sizes, these valves are often used to automatically divert flow between ports in tight spots. Use them with water, oil, air, and inert gas. All operate on electricity.
Threads and a hex nut below the handle let you install these valves through instrument panels. They are for use with water, oil, air, and inert gas. All divert flow between ports.
For a lightweight alternative to metal valves, these have a plastic body. To fit in tight spots, they have a low-profile handle and a short end-to-end length. Valves are for use with water, oil, air, and inert gas. All divert flow between ports.
A metal body provides more strength and durability than plastic. These valves have a low-profile handle and a short end-to-end length to fit in tight spots. All are for use with water, oil, air, and inert gas. They divert flow between ports.
Our smallest pressure-regulating valve.
A 316 stainless steel body provides exceptional corrosion resistance in wet conditions and harsh environments.
Regulate pressure in air and inert gas systems from your instrument panel—these valves have threads below the adjustment knob and come with a panel-mount nut.
For extremely high-pressure applications in tight spots, these valves handle the same inlet pressures as other ultra-high-pressure-regulating valves within a smaller footprint.
Prevent changes to your pressure setting—these valves come set at a nonadjustable outlet pressure.
To maintain contaminant-free standards in clean room environments, these valves come cleaned and bagged to Fed. Std. Class 100 and ISO Class 5 clean room standards and have a 316 stainless steel body with a smooth finish to resist dust collection.
Less than a quarter of the height of standard pressure-relief valves, these are often installed on tanks in low-clearance areas.
For a low-pressure seal around plastic and soft metal tubing, these valves have push-to-connect fittings.
Also known as Schrader valves, these valves rapidly fill or empty compressed air tanks or pneumatic tires.