We will reply to your message within an hour.
More
Use these valves in general purpose applications such as those with water, oil, air, and inert gas.
Extend your reach in hard-to-access areas—turn these valves on and off using a square ratchet to grasp the hole at the end of the handle. Use with water, oil, air, and inert gas.
Attach a gauge to the side port on these valves to monitor pressure, temperature, and other measurements in your line. Use with water and air.
For installation through thick insulation, these valves have an extra-long stem.
An easy-to-read flow-indicating handle shows the percentage the valve is open. These valves are for use with water, oil, inert gas, and steam.
A built-in strainer traps debris and allows you to replace the screen without disconnecting your pipeline.
Install these valves in tight spots, such as where pipelines are crowded together. They’re less than half as long as standard threaded valves and one-third shorter in height. Use with water, oil, air, and inert gas.
These valves handle twice the pressure of other compact valves. Install them in tight spots, such as where pipelines are crowded together. Use with water, oil, air, and inert gas.
Control the flow of your line while it’s protected behind an instrument panel. These valves have threads and a hex nut below the handle, so it sticks out of your panel for access. They’re for use with water, oil, air, and inert gas.
These valves are rated for at least three times the pressure of standard threaded valves. Use with water, oil, air, inert gas, and steam.
Maintain and repair these valves without unthreading pipe connections. They have a three-piece bolted body that disassembles inline for access to internal components. Use with water, oil, air, inert gas, and steam.
For fast installation and removal from pipelines, these valves have a union fitting that disassembles into multiple pieces. They’re for use with water, oil, air, inert gas, and steam.
Often used in high-purity applications, such as oxygen service, these valves come cleaned and bagged. Use with water, oil, inert gas, and steam.
Use these valves with water, air, and inert gas.
Control flow through any garden hose—the threads on these valves are universally compatible with garden hose connections. Made of PVC, they’re a lightweight and corrosion resistant alternative to metal valves.
Fit these short and slim valves in control boxes, panels, and other tight spots. Made of plastic, they won’t pit or corrode on the inside like metal valves, and they’re lighter in weight for easy handling.
A threaded union on these valves makes them easy to install and remove without disrupting your line.
Insert tubing into the fittings on these valves—no heat, solder, or flux required. They’re for use with water, oil, air, and inert gas.
Plastic provides a lightweight and economical alternative to metal. All valves have barbs that grip onto tubing for a secure hold. They’re for use with water, oil, air, and inert gas.
These valves have barbs that grip onto tubing, providing a secure hold. Because they’re made of metal, they are more durable than plastic valves and withstand higher temperatures.
For extra gripping power and a strong seal, the Yor-Lok fittings on these valves have two sleeves that bite into tubing as you tighten the nut. All are compatible with Swagelok®, Let-Lok, and Parker A-Lok fittings. These valves are for use with water, oil, air, and inert gas.
Bolt these valves to ANSI flanges.
Also known as wafer ball valves, these combine the slim body of a butterfly valve with the high flow rates of a flanged ball valve. Bolt these valves to ANSI flanges—they meet ASME standards for dimensions, material, and pressure-temperature rating. Use with water, oil, air, steam and inert gas such as helium.
Attach these valves to industry-standard two-bolt flanges on circulation pumps from manufacturers such as Bell and Gossett, Taco, Grundfos, and Armstrong. Use with water, air, and steam.
For a leak-tight connection that doesn’t require heat or soldering, these valves have press-connect fittings that crimp to metal tubing with a press-connect crimping tool.
Clean and maintain these valves without removing welded connections. They have a three-piece bolted body that disassembles inline for easy access to internal components. Use with water, oil, air, inert gas, and steam.
Often used for oxygen service and other high-purity applications, these valves come cleaned and bagged. Insert unthreaded pipe into the socket ends and weld to create a permanent, leak-tight connection. For easy maintenance, they have a three-piece bolted body that disassembles inline so you can access internal components without removing welded connections.
Weld these valves to unthreaded metal pipe for a permanent, flush connection that permits smooth flow through a line. Use with water, oil, inert gas, and steam.
For chemical-processing applications in confined areas, these valves have a low-profile handle to fit in tight spots. A rubber seal and a plastic body stand up to aggressive, corrosive solutions.
With a fluoroelastomer seal and a CPVC body, these valves can withstand aggressive and corrosive solutions in chemical-processing applications.
Attach gauges or sensors to these valves so you can remove them for maintenance and calibration without depressurizing your line. They are also known as block and bleed valves.
The most chemical-resistant threaded valves we offer, these have a PTFE seal and an alloy body that can withstand extremely aggressive and corrosive chemicals, such as methyl ethyl ketone and toluene.
No need to remove these valves from your line to access their internal components—the three-piece bolted body comes apart. Ideal in chemical-processing applications, the seal and polypropylene body stand up to aggressive and corrosive solutions.
There’s no need to unbolt these valves for cleaning—remove the valve handle and slide the valve apart for inline access to internal components. Also known as elliptical valves, they have a fluoroelastomer seal and a polypropylene body to withstand aggressive and corrosive solutions in chemical-processing applications.
For fast installation and removal from pipelines, these valves have union fittings that disassemble into multiple pieces. All have a fluoroelastomer seal and a plastic body that can stand up to aggressive and corrosive solutions in chemical-processing applications.
Insert tubing into the fittings on these valves—no heat, solder, or flux required. To withstand aggressive and corrosive solutions, they have a chemical-resistant fluoroelastomer seal and a plastic body.
Streamline your installation and removal process. These valves give you the leak-tight permanent connection of a socket connect with the ease of fittings that come apart.
Insert unthreaded pipe into the socket ends and bond with primer and cement to create a permanent, leak-tight connection. These valves have a fluoroelastomer seal and a plastic body that can withstand aggressive and corrosive solutions in chemical-processing applications.
Bolt these valves to ANSI flanges—they meet ASME dimensional standards. They have a plastic body and a seal that withstand aggressive and corrosive solutions in chemical-processing applications.
For use in drinking water systems, these valves meet NSF/ANSI 61.
Certified to meet NSF/ANSI 61, these valves control the flow of drinking water. With universally compatible threads, they’ll connect to any garden hose or garden hose fittings.
No need to completely remove these valves from your line for cleaning and repairs. The bolted three-piece body comes apart, so you can easily access their internal components.
These valves meet NSF/ANSI 61 for use in drinking water lines.
Disassemble the union fittings on these valves for fast installation and removal from your pipeline. All meet NSF/ANSI 61 for use with drinking water.
Insert unthreaded pipe into the socket ends and bond with primer and cement to create a permanent, leak-tight connection. These valves meet NSF/ANSI 61, which means they’re safe to use with drinking water systems.
Ideal for lines that need frequent maintenance, these valves have union fittings that disassemble quickly for removal. They meet NSF/ANSI 61 for use with drinking water.
Insert tubing into the push-to-connect fittings on these valves—no heat, solder, or flux required. They meet NSF/ANSI 51 for safe use with food.
Protect personnel and equipment in the presence of diesel fuel, fuel oil, gasoline, and kerosene. Fire-tested to meet American Petroleum Institute (API) 607, Edition 4, these valves are designed to securely isolate fluid and prevent the spread of fire.
Use these valves as a mainline shutoff in natural gas and propane pipelines.
Install these low-profile valves in low-clearance pipelines for natural gas, propane, and butane.
With 45° flared tube fittings, these valves form a tight seal on metal tubing lines for natural gas, propane, and butane.
The bolted-body design provides strength for a tight seal in vacuum conditions up to 29.9” Hg. Use these valves in vacuum applications, such as coating, heat treating, leak testing, and analyzing gases.
Often used in HVAC or refrigeration systems, these valves are designed to control the flow of ammonia, nitrogen, and other harsh chemicals.
Also known as gate valves, these valves gradually open and close to prevent system damage from suddenly starting and stopping flow.
Designed for use in refineries and other demanding environments, these valves have a durable body that can withstand nearly twice the pressure of other gradual on/off valves.
Maintain and repair these valves while they’re still inline—you can disassemble the stem so there's no need to unthread the pipe connections. Also known as gate valves, they open and close gradually to prevent sudden starts and stops.
Built to handle the extreme cold of liquid gases, these bronze valves are ideal for liquid carbon dioxide carbonation systems, liquid nitrogen coolant systems, and other cryogenic applications.
FM-approved for fire suppression and protection, these valves can isolate sections of the water supply in your facility.
Control the flow of steam, hazardous gases, and other vapors without risking leaks. These valves have an accordion-like bellows around the stem that expands as they open and contracts as they close, forming an airtight seal.
With a forged steel body and bolted construction, these valves can withstand nearly 10 times the pressure of other socket-connect gradual valves.
Insert unthreaded pipe into the socket ends and weld to create a permanent, leak-tight connection.
These valves have socket-weld connections for bonding to unthreaded male plastic pipe.
For use with threaded pipe, these valves have NPT connections.
A lightweight alternative to metal valves, these plastic valves have NPT connections for use with threaded pipe. All meet NSF/ANSI 61 for use in drinking water systems.
Bond these valves to plastic pipe with PVC primer and cement to create a permanent, leak-tight connection in drinking water lines. Also known as gate valves, they open and close gradually to prevent damage to your system from sudden changes in flow.
Easier to install and remove for maintenance than threaded and weld-on valves, these valves bolt and unbolt to flanges. They meet NSF/ANSI 61 for safe use in drinking water systems.
These solenoid valves operate on electricity to automatically start and stop flow. The actuator is directly mounted to the valve body to minimize movement and reduce wear.
These top-of-the-line valves are comparable to Asco Red Hat 8210G Series and Parker Gold Ring 23C Series.
These valves are rated for use in hazardous locations with flammable gas and combustible dust.
Designed for controlling single-acting, spring-return air cylinders, these valves have a third threaded port to exhaust media.
Avoid pressure surges and system shocks that can damage piping by installing these valves that open and close slowly.
Use with coolant and detergent such as ethylene glycol or soap solutions.
Sturdy internal components resist wear for a long service life in applications with frequent cycling.
Safe for automated on/off control in drinking-water systems, these valves meet NSF/ANSI Standard 61.
Designed to withstand the high temperatures and pressures in steam service applications.
Install these valves in gas pipelines to automatically control the flow of natural gas, propane, and butane to equipment.
With a plastic body and a fluoroelastomer seal, these valves can stand up to aggressive and corrosive solutions in chemical-processing applications.
Built to withstand the extreme cold of liquid nitrogen and liquid oxygen, these valves are cleaned and bagged for high-purity applications.
For use in general purpose applications with water, oil, and inert gas.
The three-piece bolted body comes apart for access to internal components without unthreading pipe connections and removing the valve from your line.
Limit wear and damage in high-cycling applications—these valves have additional seals that prevent leakage to reduce maintenance time.
A compact, lightweight actuator and an angular body allow you to install these valves in any mounting orientation.
About half the height of our other versa-mount valves, these fit in tight spots.
Less than half the height of standard severe-duty valves, these fit in small spaces and low-clearance pipelines.
Also known as diaphragm valves, these have a diaphragm that can handle dirty liquid, slurries, and abrasive media without damage.
Also known as piston valves, these have a compact, lightweight actuator that allows them to be installed in any mounting orientation. They’re often used in water-treatment applications.
Maintain and repair these valves without unthreading pipe connections. They have a three-piece bolted body that disassembles inline for access to internal components.
For general purpose applications with water, oil, and inert gas.
Separate the union fittings on each end of these valves for fast installation and removal from pipelines.
Insert unthreaded pipe into the socket ends and bond with PVC primer and cement to create a permanent, leak-tight connection.
These valves have threaded NPT connections.
All valves have threaded NPT connections.
Accurately and consistently dispense a specific amount of liquid—these actuated valves have a screen and buttons for programming batch size and calibration.
Repair actuated on/off valves from Asco, Burkert, Granzow, and Parker with these kits that include replacement seals, plunger assemblies, and springs.
Automatically or manually start and stop flow in your line with these valve bodies, which attach to your actuator.
Attach these valve bodies to your actuator to automatically or manually control flow in your line.
Threads and a hex nut below the handle let you install these valves through instrument panels. They are for use with water, oil, air, and inert gas. All divert flow between ports.
For easy installation and removal from pipelines, all ends on these valves have union fittings that disassemble into multiple pieces. Use with water. Valves divert flow between ports.
There’s no need to unbolt these valves for cleaning—remove the handle and slide the valve apart for inline access to internal components. Also known as elliptical valves, they have a fluoroelastomer seal and a polypropylene body for diverting flow in chemical-processing applications.
For easy installation and removal from pipelines, all ends on these valves have union fittings that disassemble into multiple pieces. Their fluoroelastomer seal and plastic body can withstand aggressive and corrosive solutions for diverting flow between ports in chemical-processing applications.
To divert flow between ports in drinking water lines, these valves meet NSF/ANSI 61.
Often installed on petroleum loading arms to test fuel quality without interrupting flow, these valves are fire-tested to meet American Petroleum Institute (API) 607, Edition 5, for securely isolating fluid and preventing the spread of fire.
To test water quality without interrupting flow, drain a small amount of liquid through the sampling outlet.
The industry standard for quick-disconnect couplings, these are also known as industrial interchange couplings. Compatible with Industrial-shape plugs and sockets.
Also known as automotive couplings. Compatible with Tru-Flate-shape plugs and sockets.
Sockets accommodate five common plug shapes: Industrial, ARO, Lincoln, Tru-Flate, and European.
Compatible with ARO-shape plugs and sockets.
Compatible with Schrader-shape plugs and sockets.
Compatible with Ring-Lock-shape plugs and sockets.
With an unobstructed air path, these couplings have better airflow than other coupling shapes of the same size. Compatible with European-shape plugs and sockets.
Compatible with Japanese-shape plugs and sockets.
Use these couplings at pressures up to 7,200 psi. Also known as flush-face couplings, the plugs and sockets have a flat face, which allows them to mate close together, reducing fluid loss when connecting and disconnecting the line. They are compatible with International Standard ISO Minimal-Spill-shape plugs and sockets.
Use these couplings at pressures up to 10,000 psi. Also known as flush-face couplings, the plugs and sockets have a flat face, which allows them to mate close together, reducing fluid loss when connecting and disconnecting the line. They are compatible with High-Pressure Minimal-Spill-shape plugs and sockets.
Use these couplings at pressures up to 5,000 psi. They consist of a plug and socket that connect and disconnect quickly. Use them if you need frequent access to a line. They are compatible with International Standard ISO B-shape plugs and sockets.
Ideal for lines with rapid changes in pressure and flow, these couplings have threads that lock them together. They connect more securely than push-to-connect couplings, whose bearings wear out in high-impulse conditions.
Use these couplings at pressures up to 5,000 psi. They consist of a plug and socket that connect and disconnect quickly. Use them if you need frequent access to a line. They are compatible with International Standard ISO A-shape plugs and sockets.
Use these couplings at pressures up to 3,000 psi. They consist of a plug and socket that connect and disconnect quickly. Use them if you need frequent access to a line. They are compatible with Pioneer-shape plugs and sockets.
Use these couplings at pressures up to 6,500 psi. They consist of a plug and socket that connect and disconnect quickly. Use them if you need frequent access to a line. They are compatible with Snap-Tite H-Shape plugs and sockets.
These couplings are compatible with International Standard ISO Series B-shape plugs and sockets. They are FDA compliant, so they’re suitable for food and beverage applications and won’t impart tastes or odors to the product. They consist of a plug and a socket that connect and disconnect quickly so you can frequently access your line. Use at pressures up to 220 psi.
Use these couplings when you need frequent access to a gas line. A complete coupling consists of a plug and a socket that connect and disconnect quickly.
Reduce the risk of spills near electronics when connecting and disconnecting liquid cooling lines. Also known as double shut-off couplings, these couplings have a shut-off valve on both sides that stops the flow of coolant if they’re separated.
To minimize fluid loss when connecting and disconnecting your line, these couplings have flat faces for a close fit and shut-off valves to stop the flow—they meet ISO 16028, which is an international standard for hose couplings.
Twist these fittings onto aluminum pipe for quick, sealed connections—no threading, soldering, or welding necessary. Use them to build a compressed air system in half the time it would take to build a copper or steel system.
Start and stop flow with a quarter turn of the handle. Also known as ball valves.
Lock the handle using a padlock.
Turn the handle to direct flow between ports.