We will reply to your message within an hour.
Use these valves in general purpose applications such as those with water, oil, air, and inert gas.
Extend your reach in hard-to-access areas—turn these valves on and off using a square ratchet to grasp the hole at the end of the handle. Use with water, oil, air, and inert gas.
Install these valves in tight spots, such as where pipelines are crowded together. They’re less than half as long as standard threaded valves and one-third shorter in height. Use with water, oil, air, and inert gas.
These valves handle twice the pressure of other compact valves. Install them in tight spots, such as where pipelines are crowded together. Use with water, oil, air, and inert gas.
Control the flow of your line while it’s protected behind an instrument panel. These valves have threads and a hex nut below the handle, so it sticks out of your panel for access. They’re for use with water, oil, air, and inert gas.
Insert tubing into the fittings on these valves—no heat, solder, or flux required. They’re for use with water, oil, air, and inert gas.
For fast installation and removal from pipelines, these valves have union fittings that disassemble into multiple pieces. All have a fluoroelastomer seal and a plastic body that can stand up to aggressive and corrosive solutions in chemical-processing applications.
Disassemble the union fittings on these valves for fast installation and removal from your pipeline. All meet NSF/ANSI 61 for use with drinking water.
These solenoid valves operate on electricity to automatically start and stop flow. The actuator is directly mounted to the valve body to minimize movement and reduce wear.
Attach these valve bodies to your actuator to automatically or manually control flow in your line.
The industry standard for quick-disconnect couplings, these are also known as industrial interchange couplings. Compatible with Industrial-shape plugs and sockets.
Sockets accommodate five common plug shapes: Industrial, ARO, Lincoln, Tru-Flate, and European.
Compatible with ARO-shape plugs and sockets.
With an unobstructed air path, these couplings have better airflow than other coupling shapes of the same size. Compatible with European-shape plugs and sockets.
Compatible with Japanese-shape plugs and sockets.
Use these couplings at pressures up to 7,200 psi. Also known as flush-face couplings, the plugs and sockets have a flat face, which allows them to mate close together, reducing fluid loss when connecting and disconnecting the line. They are compatible with International Standard ISO Minimal-Spill-shape plugs and sockets.
Use these couplings at pressures up to 5,000 psi. They consist of a plug and socket that connect and disconnect quickly. Use them if you need frequent access to a line. They are compatible with International Standard ISO B-shape plugs and sockets.
Use these couplings at pressures up to 10,000 psi. The plug and socket thread together to form a stronger connection than other quick-disconnect couplings. They are compatible with High-Pressure Thread-Lock-shape plugs and sockets.
Use these couplings at pressures up to 3,000 psi. They consist of a plug and socket that connect and disconnect quickly. Use them if you need frequent access to a line. They are compatible with Pioneer-shape plugs and sockets.
Reduce the risk of spills near electronics when connecting and disconnecting liquid cooling lines. Also known as double shut-off couplings, these couplings have a shut-off valve on both sides that stops the flow of coolant if they’re separated.
Minimize spills if a driver pulls away from your diesel exhaust fluid (DEF) pump too soon. Both halves of these couplings have a shut-off valve that stops the flow they’re separated.
To minimize fluid loss when connecting and disconnecting your line, these couplings have flat faces for a close fit and shut-off valves to stop the flow—they meet ISO 16028, which is an international standard for hose couplings.
Minimize chemical and petroleum spills during accidental disconnects, such as a driver pulling away during loading. These couplings have a shut-off valve on each half to stop flow when they’re separated.
Start and stop flow with a quarter turn of the handle. Also known as ball valves.