We will reply to your message within an hour.
More
Insert tubing into the fittings on these valves—no heat, solder, or flux required.
Made of brass, these valves are more durable than plastic valves. Push tubing into the fittings and an internal gripping ring and O-ring hold it tight—no heat, solder, or flux required. These valves meet NSF/ANSI 61 for use in drinking water systems.
Insert your tubing into the fittings of these valves with just a push—the internal rings will grip it tight. Made of plastic, these valves are a lightweight alternative to metal valves. All meet NSF/ANSI 61 for safe use with drinking water.
Insert tubing into the fittings on these valves—no heat, solder, or flux required. To withstand aggressive and corrosive solutions, they have a chemical-resistant fluoroelastomer seal and a plastic body.
Push tubing into the fittings on these valves and an internal gripping ring and O-ring hold it tight—no heat, solder, or flux required. They meet either NSF/ANSI standards or are FDA compliant for use with food.
Insert tubing into the fittings on these valves—no heat, solder, or flux required. All are for use with water, oil, air, and inert gas. They divert flow between ports in tubing lines.
Insert tubing into the fittings on these valves—no heat, solder, or flux required. Designed for diverting flow between ports in chemical tubing lines, they have a fluoroelastomer seal and a PVDF body to withstand aggressive and corrosive solutions.
Insert tubing into the fittings on these valves—no heat, solder, or flux required. They divert flow between ports in food and beverage tubing lines.
To test water quality without interrupting flow, drain a small amount of liquid through the sampling outlet.
Insert tubing into the fitting—no heat, solder, or flux required.
The metal body is more durable than plastic.