We will reply to your message within an hour.
Also known as mild steel, low-carbon steel is easy to machine, form, and weld. It's widely fabricated into parts that don’t require high strength.
These rods are precision ground and held to a strict straightness tolerance, so they're ready for turning in a lathe.
The matte plating on these rods increases corrosion resistance and wear resistance.
Often called Stressproof, these rods are stress-relieved to minimize warping during machining.
These rods are precision ground and held to a strict straightness tolerance, so they're all set for turning applications in your lathe.
Also known as Fatigueproof, these rods have enhanced strength and resistance to breaking from repeated impact compared to High-Strength Easy-to-Machine 1144 Carbon Steel Rods.
Ready for turning in a lathe, these rods are precision ground and held to a strict straightness tolerance.
The lead additive acts as a lubricant, which allows 12L14 carbon steel to withstand very fast machining. It's used to fabricate a wide variety of machine parts.
A lead-free alternative to 12L14, 1215 carbon steel contains the same amount of sulfur and phosphorus for excellent machinability. It is often used for shaft couplings, studs, and pins.
1117 carbon steel responds to surface-hardening heat treatment better than other easy-to-machine carbon steels. Use it to fabricate shaft couplings, studs, pins, and universal joints.
Stronger than low-carbon steel with equally good machinability, 1045 carbon steel is widely used for bolts, studs, and shafts.
The chrome plating on these rods increases corrosion resistance.
These rods are hardened for increased abrasion and impact resistance. Also known as chrome-moly steel, 4140 alloy steel resists fracturing from repeated stress.
Also known as chrome-moly steel, this versatile 4140 alloy steel is used for a wide range of parts, such as gears, axles, shafts, collets, and die holders. It resists fracturing from repeated stress.
Often called ETD-150, these rods are made from a modified version of 4140 alloy steel and have been drawn at high temperatures for excellent strength.
4130 alloy steel has a low carbon content that provides good weldability. It's often used for gears, fasteners, and structural applications.
Use for power transmission and structural applications that involve extreme impact, heat, and wear.
Also known as chrome steel, 52100 is an extremely hard and wear-resistant material. It’s used for parts such as bearings, bushings, and punches.
Often used for gears, shafts, and ball screws, 4150 alloy steel resists wear from friction and abrasion.
An oversized diameter allows for finishing to your exact requirements.
From cookware to chemical-processing equipment, 304 stainless steel is a good all-around choice for a wide range of applications.
When compared to standard 304 stainless steel, this material can be machined faster with less wear on cutting tools. It's also called Prodec and Project 70+.
Widely used for fabricating fittings and fasteners, 303 stainless steel machines quickly without sticking to cutting tools.
This material has tighter tolerances than standard 303 stainless steel.
Offering outstanding resistance to surface wear and corrosion, Nitronic 60 stainless steel is often used for shafts, fasteners, and valves.
The addition of molybdenum gives 316 stainless steel excellent corrosion resistance. Use it in a variety of marine and chemical-processing applications.
This material machines faster with less wear on cutting tools than standard 316 stainless steel. It's also called Prodec and Project 70+.
Hardened for improved strength and wear resistance, these rods are precision ground to a strict diameter tolerance. Use them for turning applications in your lathe.
With a higher chromium content than 15-5 PH stainless steel, this high-strength 17-4 PH offers better corrosion resistance. It is also known as 630 stainless steel.
This material is hardened for improved strength and wear resistance.
One of the most machinable types of stainless steel available, 416 contains sulfur for fast machining without clogging cutting tools. It's used for gears, screws, and shafts.
Ready for turning in your lathe, these rods are precision ground to a tight tolerance.
One of the hardest types of stainless steel after heat treating, 440C offers excellent wear and abrasion resistance. It's often used for bearings, valves, and knife blades.
Often used for fasteners and valves, 410 stainless steel withstands wear caused by abrasion.
Made from powdered metal, M4 tool steel has a consistent microstructure that gives it outstanding resistance to wear and abrasion. It is comparable to CPM Rex M4.
Precision ground and held to a strict straightness tolerance, these rods are ready for turning in your lathe.
The diameter on these rods is precision ground while the straightness is held to a strict tolerance, so they're ready for turning in a lathe.
All set for turning in your lathe, these precision-ground rods are held to a strict straightness tolerance.
Ready for turning in a lathe, these rods are precision ground to a tight diameter tolerance.
Ground and held to strict diameter and straightness tolerances, these rods are ready to be turned in a lathe.
An oversized diameter on these rods allows for finishing to your exact requirements.
Furnished hardened, P20 tool steel is strong and easy to machine. It has the wear resistance and highly polishable surface needed to fabricate long-lasting molds and dies.
The most widely used aluminum, 6061 is fabricated into everything from pipe fittings and containers to automotive and aerospace parts. It is strong and corrosion resistant, plus it's easy to machine and weld.
These rods and discs are precision ground to offer tighter tolerances than standard 6061 rods and discs.
Frequently used to make valve bodies, pistons, and hydraulic parts, 6020 aluminum is easier to machine and more corrosion resistant than 6061, but it is not as weldable.
As the strongest multipurpose aluminum we offer, 6013 aluminum has the same good corrosion resistance, weldability, and machinability as 6061 with increased strength. 6013 is often fabricated into high-stress machine parts.
Originally developed for aircraft frames, uses for 7075 aluminum now include keys, gears, and other high-stress parts. It is often used as a replacement for 2024 aluminum because it’s stronger and provides similar performance in all other aspects.
While 2024 aluminum was initially designed for structural components in aircraft, it's now widely used when a high strength-to-weight ratio is needed, such as for gears, shafts, and fasteners. It offers similar performance to 7075 aluminum, but it’s not as strong.
2011 has the best machinability of all the aluminum alloys. It is the most selected aluminum for screws, tube fittings, hose parts, and other items that require extensive machining.
With the highest lead content of all the brass alloys, 360 offers the best machinability. Often called free-machining and free-cutting brass, it stands up to high-speed drilling, milling, and tapping operations with minimal wear on your tools. It’s commonly used for gears, pinions, and lock components.
Also known as high-leaded naval brass, 485 brass contains lead for good machinability. It is commonly used for marine hardware, valve stems, and screw machine products.
Offering high electrical conductivity and formability, 110 copper is 99.9% pure. Also known as ETP copper, it's often used in electrical applications, such as for bus bars and wire connectors, as well as for flashing, gaskets, and rivets.
Also called tellurium copper, 145 copper contains tellurium, which makes it more machinable than all other copper while maintaining good corrosion resistance and high electrical conductivity. It’s often used for transformer and circuit-breaker terminals, welding torch tips, and fasteners.
Rated RWMA Class 4, 172 beryllium copper is the strongest beryllium copper alloy that is also electrically conductive and extremely wear resistant. It’s often used in inserts, die facings, and molds for plastic that need to withstand stress over repeated use.
Diameter is oversized to allow for finishing.
These rods are precision ground for a tight diameter tolerance of ±0.0005".
954 bronze contains a minimum of 10% aluminum for strength and weldability. It is also known as aluminum bronze. It's widely used for bearings, bushings, valve bodies, and worm gears.
Powdered bronze is pressed and then impregnated with SAE 30 oil to make this material self-lubricating.
An excellent alternative to oil-filled bronze, graphite-filled bronze provides dry lubrication in temperatures as high as 700° F.
Known for its ability to resist stress cracking and fatigue, 544 bronze also offers good formability and excellent machinability. It's commonly called phosphor bronze.
An easier-to-machine alternative to 932 bronze, 936 also has better corrosion resistance. It's also called modified SAE 64.
AMPCO® 18 is a premium aluminum-bronze alloy that combines strength with superior wear resistance.
Because 510 bronze is very strong and formable, it is the best choice for applications involving repetitive motion, such as springs and bellows.
Also known as leaded commercial bronze, 316 contains lead for good machinability.
Grade 5 is the strongest of all the titanium alloys thanks to its higher aluminum and vanadium content. It offers a versatile mix of good corrosion resistance, weldability, and formability. It's often used for turbine blades, fasteners, and spacer rings.
Because Grade 2 titanium is 99% pure, it is more corrosion resistant than Grades 5 and 9 but not as strong. It has good formability and weldability. Common uses include chemical processing equipment, heat exchangers, and marine hardware.
A blend of nickel, chromium, and molybdenum gives these 625 nickel rods the strength, weldability, and corrosion resistance necessary for use in expansion joints, exhaust systems, and marine components. They are comparable to Inconel 625 and Haynes 625.
Even in temperatures up to 2000° F, Alloy X nickel rods offer good strength and weldability, along with excellent oxidation resistance. They're often used for components in gas turbine engines and furnaces. This material is equivalent to Inconel HX and Hastelloy X.
Cut and thread discs and other parts that draw corrosion away from nearby metal in water tanks, heat exchangers, and marine applications.
Delrin® acetal resin, also known as acetal homopolymer, is stronger and stiffer than acetal copolymer.
The addition of PTFE provides a more slippery, wear-resistant surface than standard Delrin® acetal resin. It’s commonly fabricated into pump components, gears, and bearings.
An economical alternative to Delrin® acetal resin, this acetal copolymer offers similar wear resistance.
A silicone additive gives this material a self-lubricating surface that reduces friction and extends the life of your parts.
Also known as nylon 6/6, this general purpose material is often used for bearings, gears, valve seats, and other high-wear parts.
Because this 6/12 material absorbs less water than standard nylon 6/6, it holds its shape better. It’s often machined into hose fittings and valve components.
This nylon 6/6 material is modified with MDS for a self-lubricating surface that’s more slippery than standard nylon. It's often used in high-friction applications, such as gears and bearings.
With glass reinforcement, this nylon 6/6 material is stronger than standard nylon, plus it can withstand higher temperatures. It’s widely used in high-stress applications, such as caster wheels and automotive parts.
The addition of MDS results in a nylon with exceptional wear resistance as well as self-lubricating properties.
This nylon stays lubricated over time because it’s filled with oil. Use it to fabricate parts for hard-to-reach places where adding lubricants would be difficult.
In addition to a low-friction surface that prevents sticking and binding, this tough material is impact and wear resistant to handle the scuffs, scrapes, and strikes that other plastics can’t.
This material suppresses static charges to prevent dust from building up.
This oil-filled material is self-lubricating for an extra-slippery surface.
Because PVC resists many acids and alkalies, it’s widely used for tanks and in chemical-processing applications. Also known as PVC Type 1.
CPVC is just as chemical resistant as standard PVC Type 1 and can handle hotter temperatures up to 200° F.
Offering greater impact resistance than standard PVC Type 1 with similar chemical resistance, this PVC Type 2 is widely used for parts that are subject to shock.
Because ABS maintains its toughness even after thermoforming, it’s often made into storage cases, tote trays, equipment housings, and protective gear.
Practically nonabsorbent, HDPE won't swell when exposed to moisture. It is denser and more rigid than LDPE, plus it's more chemical resistant.
Because this polypropylene resists swelling when exposed to water, it’s often fabricated into containers and parts for laboratory equipment.
When moisture-resistant polyester is combined with PTFE, the result is this self-lubricating material. It’s also called Hydex and PBT.
Polyester resists swelling in wet environments.
These black polyester rods protect from UV rays better than off-white polyester. Strong and semi-rigid, they won't swell in moist environments, so they're often made into valves, pump components, and spacers.
Use Noryl PPO for electrical insulating applications where moisture is a concern. It remains dimensionally stable over time, even when temperatures fluctuate.
Known for its naturally slippery surface, PTFE surpasses most plastics when it comes to chemical resistance and performance in extreme temperatures.
Also called reprocessed and mechanical-grade PTFE, this material is an economical alternative to standard PTFE.
This glass-filled PTFE is more rigid than standard PTFE for increased durability in high-stress applications.
Cast acrylic is easier to machine than extruded acrylic. It's comparable to Lucite and Plexiglas® Acrylic.
Found in hand-powered clamps, vises, grates, doors, and work tables, lead screws and nuts have broad, square threads that are well suited for quick assembly, high clamping forces, and lifting and lowering heavy objects.
Also known as trapezoidal-thread lead screws and nuts.
Combine these general purpose shafts with a linear bearing and shaft support to create a basic linear motion system.
For a snug fit with a linear bearing in high-precision applications, these shafts are turned, ground, and polished to tight diameter and straightness tolerances.
Combine these general purpose drive shafts with gears, sprockets, and bearings to transmit rotary motion.
Combine with a machine key to transmit torque to gears, sprockets, and other power transmission components.
These shafts have keyways only on the ends, leaving a plain shaft in the center. Use the keyways with machine keys to transmit torque to gears, sprockets, and other keyed components. Use the middle of the shaft with bearings and other round-bore components.
Good for hydraulic systems, machine tools, and other high-torque applications, these shafts have teeth that transmit high rotational loads.
Also called Pyrex and Schott glass, these glass rods and discs resist clouding and pitting and are highly chemical and heat resistant.
Stronger than natural rubber, these polyurethane rods combine the shock-absorbing qualities of rubber with the tear resistance of plastic. Use them to seal narrow spaces such as channels.
The cylindrical shape fits into channels and other narrow spaces for sealing and cushioning.
Seal and cushion narrow spaces, such as inside channels and seams.
Resistant to sunlight, ozone, and water, these rods are sized to seal narrow spaces such as channels.
Birch is softer than maple and oak and has a smooth surface.