We will reply to your message within an hour.
More
Use these valves in general purpose applications such as those with water, oil, air, and inert gas.
Extend your reach in hard-to-access areas—turn these valves on and off using a square ratchet to grasp the hole at the end of the handle. Use with water, oil, air, and inert gas.
For applications that require intermittent operation, such as spraying and washing, push or pull the lever on these valves to start flow. They spring closed when the lever is released.
An easy-to-read flow-indicating handle shows the percentage the valve is open. These valves are for use with water, oil, inert gas, and steam.
Attach a gauge to the side port on these valves to monitor pressure, temperature, and other measurements in your line. Use with water and air.
For installation through thick insulation, these valves have an extra-long stem.
A built-in strainer traps debris and allows you to replace the screen without disconnecting your pipeline.
Install these valves in tight spots, such as where pipelines are crowded together. They’re less than half as long as standard threaded valves and one-third shorter in height. Use with water, oil, air, and inert gas.
These valves handle twice the pressure of other compact valves. Install them in tight spots, such as where pipelines are crowded together. Use with water, oil, air, and inert gas.
With 10-32 UNF threads and a body less than 3/4” long, these valves are often used to control flow in miniature pipelines. They’re rated for use with water, oil, air, and inert gas.
Push a button or flip a toggle switch to start or stop flow.
Control the flow of your line while it’s protected behind an instrument panel. These valves have threads and a hex nut below the handle, so it sticks out of your panel for access. They’re for use with water, oil, air, and inert gas.
Start or stop flow with the flip of a toggle switch or the push of a button. They fit through a cutout, so the body of the valve stays safe inside your instrumentation panel.
These valves are rated for at least three times the pressure of standard threaded valves. Use with water, oil, air, inert gas, and steam.
Maintain and repair these valves without unthreading pipe connections. They have a three-piece bolted body that disassembles inline for access to internal components. Use with water, oil, air, inert gas, and steam.
For fast installation and removal from pipelines, these valves have a union fitting that disassembles into multiple pieces. They’re for use with water, oil, air, inert gas, and steam.
Often used in high-purity applications, such as oxygen service, these valves come cleaned and bagged. Use with water, oil, inert gas, and steam.
Make connections from any direction—the body of these valves swivels 360° for easy installation. Often used in testing and sampling applications, they quickly open and close with a toggle or button.
Use these valves with water, air, and inert gas.
Control flow through any garden hose—the threads on these valves are universally compatible with garden hose connections. Made of PVC, they’re a lightweight and corrosion resistant alternative to metal valves.
A threaded union on these valves makes them easy to install and remove without disrupting your line.
Fit these short and slim valves in control boxes, panels, and other tight spots. Made of plastic, they won’t pit or corrode on the inside like metal valves, and they’re lighter in weight for easy handling.
Bolt these valves to ANSI flanges.
Also known as wafer ball valves, these combine the slim body of a butterfly valve with the high flow rates of a flanged ball valve. Bolt these valves to ANSI flanges—they meet ASME standards for dimensions, material, and pressure-temperature rating. Use with water, oil, air, steam and inert gas such as helium.
Attach these valves to industry-standard two-bolt flanges on circulation pumps from manufacturers such as Bell and Gossett, Taco, Grundfos, and Armstrong. Use with water, air, and steam.
Insert tubing into the fittings on these valves—no heat, solder, or flux required.
For extra gripping power and a strong seal, the Yor-Lok fittings on these valves have two sleeves that bite into tubing as you tighten the nut. All are compatible with Swagelok®, Let-Lok, and Parker A-Lok fittings. These valves are for use with water, oil, air, and inert gas.
Easily access the handle of these valves while protecting your line behind an instrument panel. Threads and a hex nut below the handle allow you to install these valves in instrument panels. For extra gripping power and a strong seal, they have Yor-Lok fittings with two sleeves that bite into tubing as you tighten the nut. All are compatible with Swagelok®, Let-Lok, and Parker A-Lok fittings.
Flip the toggle to quickly turn these valves on and off. All have threads and a hex nut below the handle for installation in instrument panels. For extra gripping power and a strong seal, they have Yor-Lok fittings with two sleeves that bite into tubing as you tighten the nut. All are compatible with Swagelok®, Let-Lok, and Parker A-Lok fittings. These valves are for use with water, oil, air, and inert gas.
Plastic provides a lightweight and economical alternative to metal. All valves have barbs that grip onto tubing for a secure hold. They’re for use with water, oil, air, and inert gas.
These valves have barbs that grip onto tubing, providing a secure hold. Because they’re made of metal, they are more durable than plastic valves and withstand higher temperatures.
Clean and maintain these valves without removing welded connections. They have a three-piece bolted body that disassembles inline for easy access to internal components. Use with water, oil, air, inert gas, and steam.
Often used for oxygen service and other high-purity applications, these valves come cleaned and bagged. Insert unthreaded pipe into the socket ends and weld to create a permanent, leak-tight connection. For easy maintenance, they have a three-piece bolted body that disassembles inline so you can access internal components without removing welded connections.
Also known as luer-lock couplings, quick-turn fittings consist of a plug and a socket that connect with a half turn, so you can easily connect and disconnect your line. Use these valves with water and oil.
Solder these valves to metal tubing for a permanent, leak-tight connection. Use with water, oil, air, inert gas, and steam.
Service these valves without cutting soldered connections. The three-piece bolted body can be disassembled inline for easy access to internal components. Use with water, oil, inert gas, and steam.
For more durability than plastic valves, these are made of metal. A compression sleeve bites into tubing as you tighten the nut, forming a strong seal. Use these valves with water, oil, air, inert gas, and steam.
Use these plastic valves for a lightweight and economical alternative to metal. They have a compression sleeve that bites into tubing as you tighten the nut, forming a strong seal. Use with water, air, and inert gas.
Weld these valves to unthreaded metal pipe for a permanent, flush connection that permits smooth flow through a line. Use with water, oil, inert gas, and steam.
For quick and easy access to your line, these valves attach to pipe with a clamp that fits around their grooved ends. They’re also known as Victaulic valves.
Insert unthreaded pipe into the socket ends and bond with primer and cement to create a permanent, leak-tight connection. These valves meet NSF/ANSI 61, which means they’re safe to use with drinking water systems.
Ideal for lines that need frequent maintenance, these valves have union fittings that disassemble quickly for removal. They meet NSF/ANSI 61 for use with drinking water.
For use in drinking water systems, these valves meet NSF/ANSI 61.
Certified to meet NSF/ANSI 61, these valves control the flow of drinking water. With universally compatible threads, they’ll connect to any garden hose or garden hose fittings.
No need to completely remove these valves from your line for cleaning and repairs. The bolted three-piece body comes apart, so you can easily access their internal components.
A short body length and low profile make these valves ideal for installation in tight spaces, such as behind panels. They meet NSF/ANSI 61 standards for safe use in drinking water systems.
Made of plastic, these valves won’t pit or corrode on the inside like metal valves, and they’re lighter in weight. They meet NSF/ANSI 61 for use with drinking water.
Disassemble the union fittings on these valves for fast installation and removal from your pipeline. All meet NSF/ANSI 61 for use with drinking water.
Protect your drinking water line behind an instrument panel while keeping the handle handy. These valves have a nut that threads onto the stem to mount the handle onto the panel.
For a permanent, leak-tight connection that doesn’t require heat or soldering, these valves have press-connect fittings that crimp to metal tubing. Install them with a press-connect crimping tool. These valves meet NSF/ANSI 61 for use in drinking water systems.
Insert your tubing into the fittings of these valves with just a push—the internal rings will grip it tight. Made of plastic, these valves are a lightweight alternative to metal valves. All meet NSF/ANSI 61 for safe use with drinking water.
Made of brass, these valves are more durable than plastic valves. Push tubing into the fittings and an internal gripping ring and O-ring hold it tight—no heat, solder, or flux required. These valves meet NSF/ANSI 61 for use in drinking water systems.
Solder these valves to metal tubing for a permanent, leak-tight connection. They meet NSF/ANSI 61 for use with drinking water.
Bolt these valves onto ANSI flanges. They meet NSF/ANSI standard 61, so they’re safe for use in drinking water systems.
For chemical-processing applications in confined areas, these valves have a low-profile handle to fit in tight spots. A rubber seal and a plastic body stand up to aggressive, corrosive solutions.
To withstand aggressive and corrosive solutions in miniature chemical-processing pipelines, these tiny valves have a chemical-resistant fluoroelastomer seal and a corrosion-resistant 303 stainless steel body.
Attach gauges or sensors to these valves so you can remove them for maintenance and calibration without depressurizing your line. They are also known as block and bleed valves.
With a fluoroelastomer seal and a CPVC body, these valves can withstand aggressive and corrosive solutions in chemical-processing applications.
The most chemical-resistant threaded valves we offer, these have a PTFE seal and an alloy body that can withstand extremely aggressive and corrosive chemicals, such as methyl ethyl ketone and toluene.
For fast installation and removal from pipelines, these valves have union fittings that disassemble into multiple pieces. All have a fluoroelastomer seal and a plastic body that can stand up to aggressive and corrosive solutions in chemical-processing applications.
No need to remove these valves from your line to access their internal components—the three-piece bolted body comes apart. Ideal in chemical-processing applications, the seal and polypropylene body stand up to aggressive and corrosive solutions.
There’s no need to unbolt these valves for cleaning—remove the valve handle and slide the valve apart for inline access to internal components. Also known as elliptical valves, they have a fluoroelastomer seal and a polypropylene body to withstand aggressive and corrosive solutions in chemical-processing applications.
Streamline your installation and removal process. These valves give you the leak-tight permanent connection of a socket connect with the ease of fittings that come apart.
Insert unthreaded pipe into the socket ends and bond with primer and cement to create a permanent, leak-tight connection. These valves have a fluoroelastomer seal and a plastic body that can withstand aggressive and corrosive solutions in chemical-processing applications.
Insert tubing into the fittings on these valves—no heat, solder, or flux required. To withstand aggressive and corrosive solutions, they have a chemical-resistant fluoroelastomer seal and a plastic body.
Barbs grip onto tubing, providing a secure hold. To withstand aggressive and corrosive solutions in chemical-processing applications, these valves have a plastic body and a chemical-resistant seal.
Bolt these valves to ANSI flanges—they meet ASME dimensional standards. They have a plastic body and a seal that withstand aggressive and corrosive solutions in chemical-processing applications.
For extra gripping power and a strong seal, the Yor-Lok fittings on these valves have two sleeves that bite into tubing as you tighten the nut. All are compatible with Swagelok®, Let-Lok, and Parker A-Lok fittings. These valves have a PTFE seal and a corrosion-resistant Monel ball and body that can stand up to aggressive and corrosive chemicals such as acetone.
Insert tubing into the push-to-connect fittings on these valves—no heat, solder, or flux required. They meet NSF/ANSI 51 for safe use with food.
To maintain sanitary standards in food, beverage, and dairy systems that require frequent cleaning, these valves are made of FDA compliant materials. Polished to a 32 Ra finish, they have smooth internal surfaces that prevent product buildup and inhibit bacteria growth. All have sanitary quick-clamp fittings for easy disassembly.
3-A certified as meeting sanitary design standards, these valves control the flow of liquids in food, dairy, pharmaceutical, and cosmetic plants.
Weld these valves to unthreaded metal pipe for a permanent, flush connection that permits smooth flow through a line. They have polished internal surfaces for easy cleaning in food and beverage systems.
To prevent leaks, these valves have barbed fittings that grip onto tubing to create a strong hold. They meet NSF/ANSI standards or are FDA compliant for use with food.
Protect personnel and equipment in the presence of diesel fuel, fuel oil, gasoline, and kerosene. Fire-tested to meet American Petroleum Institute (API) 607, Edition 4, these valves are designed to securely isolate fluid and prevent the spread of fire.
A low-profile handle allows these valves to fit in low-clearance pipelines for diesel fuel, fuel oil, and kerosene.
These valves have 37° flared tube fittings that form a tight seal on metal tubing lines to transfer diesel fuel, fuel oil, and gasoline.
For extra gripping power and a strong seal, these valves have Yor-Lok fittings with two sleeves that bite into tubing as you tighten the nut. They are compatible with Swagelok®, Let-Lok, and Parker A-Lok fittings. Use with diesel fuel, fuel oil, gasoline, and kerosene.
Install these low-profile valves in low-clearance pipelines for natural gas, propane, and butane.
Use these valves as a mainline shutoff in natural gas and propane pipelines.
With 45° flared tube fittings, these valves form a tight seal on metal tubing lines for natural gas, propane, and butane.
To create a tight seal in vacuum conditions higher than 29.9” Hg, these valves have ultra-high-vacuum tube fitting connections, which are also known as KF, QF, and NW fittings. They are often used in applications such as vacuum coating and heat treating, leak testing, and analyzing gases.
The bolted-body design provides strength for a tight seal in vacuum conditions up to 29.9” Hg. Use these valves in vacuum applications, such as coating, heat treating, leak testing, and analyzing gases.
Often used in HVAC or refrigeration systems, these valves are designed to control the flow of ammonia, nitrogen, and other harsh chemicals.
Also known as gate valves, these valves gradually open and close to prevent system damage from suddenly starting and stopping flow.
Designed for use in refineries and other demanding environments, these valves have a durable body that can withstand nearly twice the pressure of other gradual on/off valves.
Maintain and repair these valves while they’re still inline—you can disassemble the stem so there's no need to unthread the pipe connections. Also known as gate valves, they open and close gradually to prevent sudden starts and stops.
Prevent boiler scale deposits and sediment buildup with these valves designed to meet ASME standards for boiler drainage applications.
Built to handle the extreme cold of liquid gases, these bronze valves are ideal for liquid carbon dioxide carbonation systems, liquid nitrogen coolant systems, and other cryogenic applications.
FM-approved for fire suppression and protection, these valves can isolate sections of the water supply in your facility.
These valves have a sharp gate that slices through thick slurries, wastewater, dry bulk solids, and other materials that would clog other gradual on/off valves.
Control the flow of steam, hazardous gases, and other vapors without risking leaks. These valves have an accordion-like bellows around the stem that expands as they open and contracts as they close, forming an airtight seal.
With a forged steel body and bolted construction, these valves can withstand nearly 10 times the pressure of other socket-connect gradual valves.
Insert unthreaded pipe into the socket ends and weld to create a permanent, leak-tight connection.
Solder these valves to copper tubing for a permanent, leak-tight connection.
For a leak-tight connection, crimp the press-connect fittings on these valves to metal tubing with a crimping tool—no heat or soldering required. They open and close gradually as the wheel handle turns, preventing sudden starts and stops of flow.
These valves have socket-weld connections for bonding to unthreaded male plastic pipe.
For use with threaded pipe, these valves have NPT connections.
Also known as vacuum isolation valves, these block flow so you can install and remove gauges from your system. They can also be used to add or vent gases in high-vacuum systems.
Bond these valves to plastic pipe with PVC primer and cement to create a permanent, leak-tight connection in drinking water lines. Also known as gate valves, they open and close gradually to prevent damage to your system from sudden changes in flow.
A lightweight alternative to metal valves, these plastic valves have NPT connections for use with threaded pipe. All meet NSF/ANSI 61 for use in drinking water systems.
Easier to install and remove for maintenance than threaded and weld-on valves, these valves bolt and unbolt to flanges. They meet NSF/ANSI 61 for safe use in drinking water systems.
For a leak-tight connection in drinking water lines without heat or soldering, crimp the fittings on these valves to metal tubing with a press-connect crimping tool. They open and close gradually with multiple turns of the handle wheel to prevent jolts from sudden stops and starts.
Also known as gate valves, these valves open and close gradually to prevent damage to your drinking water system from sudden starts and stops in flow. They meet NSF/ANSI 61, so they're safe to use with drinking water.
These solenoid valves operate on electricity to automatically start and stop flow. The actuator is directly mounted to the valve body to minimize movement and reduce wear.
These top-of-the-line valves are comparable to Asco Red Hat 8210G Series and Parker Gold Ring 23C Series.
Lower profile and available in smaller connection sizes than standard valves, these fit in tight spots.
Control flow in high-pressure lines in tight spots—these valves have the highest pressure ratings of our compact valves.
Comparable to Asco Red Hat 8210G Series and Parker Gold Ring 23C Series, these valves meet the highest quality standards.
Less than half the size of our other compact valves, these have small pipe connections for miniature lines.
To fit in tight spots, these valves have a slimmer body than standard valves with an exhaust port.
Designed for controlling single-acting, spring-return air cylinders, these valves have a third threaded port to exhaust media.
These valves are rated for use in hazardous locations with flammable gas and combustible dust.
Avoid pressure surges and system shocks that can damage piping by installing these valves that open and close slowly.
Turn the knob to adjust how much these valves will open or close when actuated. They are often used in irrigation and landscaping applications.
Use with coolant and detergent such as ethylene glycol or soap solutions.
Reduce your pipeline footprint with these low-profile valves that are about half the size of standard valves for coolant.
Often used to control single-acting, spring-return air cylinders, these valves have a third threaded port to exhaust media.
Sturdy internal components resist wear for a long service life in applications with frequent cycling.
To change the flow rate of antifreeze and cleaning solutions, use the adjustment screw or knob to manually set how much these valves will open when actuated.
Designed to withstand the high temperatures and pressures in steam service applications.
Built to withstand the extreme cold of liquid nitrogen and liquid oxygen, these valves are cleaned and bagged for high-purity applications.
These valves have threaded NPT connections.
For applications sensitive to contamination, these valves stop flow without contacting the process media by pressing down on the outside of tubing.
With a plastic body and a fluoroelastomer seal, these valves can stand up to aggressive and corrosive solutions in chemical-processing applications.
Safe for automated on/off control in drinking-water systems, these valves meet NSF/ANSI Standard 61.
Install these valves in gas pipelines to automatically control the flow of natural gas, propane, and butane to equipment.
Supply fuel oil to boilers, furnaces, and other equipment.
For use in general purpose applications with water, oil, and inert gas.
The three-piece bolted body comes apart for access to internal components without unthreading pipe connections and removing the valve from your line.
Limit wear and damage in high-cycling applications—these valves have additional seals that prevent leakage to reduce maintenance time.
A compact, lightweight actuator and an angular body allow you to install these valves in any mounting orientation.
About half the height of our other versa-mount valves, these fit in tight spots.
Also known as diaphragm valves, these have a diaphragm that can handle dirty liquid, slurries, and abrasive media without damage.
Less than half the height of standard severe-duty valves, these fit in small spaces and low-clearance pipelines.
Also known as butterfly valves.
Their ball-valve design allows these valves to handle three times the flow of butterfly valves.
Also known as actuated ball valves, these provide higher flow rates than other air-driven valves.
Also known as piston valves, these have a compact, lightweight actuator that allows them to be installed in any mounting orientation. They’re often used in water-treatment applications.
With a ball-valve design, these valves can handle three times the flow of butterfly valves.
For food and beverage applications that require frequent cleaning, these valves have quick-clamp connections, polished internal surfaces, and a three-piece bolted body for easy disassembly.
Use air pressure to automatically control the flow of liquids in sanitary environments, such as food and beverage processing plants.
Use these valves to safely transfer fuel and oil.
For general purpose applications with water, oil, and inert gas.
Maintain and repair these valves without unthreading pipe connections. They have a three-piece bolted body that disassembles inline for access to internal components.
With a slimmer motor than other motor-driven valves, these fit in tight spots.
Separate the union fittings on each end of these valves for fast installation and removal from pipelines.
Their ball valve design allows these valves to handle three times the flow of butterfly valves.
Slide copper pipe into the solder-connect fittings on these valves and weld for a strong, permanent connection.
Insert unthreaded pipe into the socket ends and bond with PVC primer and cement to create a permanent, leak-tight connection.
For three times the flow of butterfly valves, these have a ball valve design.
All valves have threaded NPT connections.
For food and beverage systems that require frequent cleaning, these valves have polished internal surfaces and sanitary quick-clamp connections for easy disassembly.
Accurately and consistently dispense a specific amount of liquid—these actuated valves have a screen and buttons for programming batch size and calibration.
These valves divert flow between ports. Use with water, oil, air, and inert gas.
Threads and a hex nut below the handle let you install these valves through instrument panels. They are for use with water, oil, air, and inert gas. All divert flow between ports.
A metal body provides more strength and durability than plastic. These valves have a low-profile handle and a short end-to-end length to fit in tight spots. All are for use with water, oil, air, and inert gas. They divert flow between ports.
For a lightweight alternative to metal valves, these have a plastic body. To fit in tight spots, they have a low-profile handle and a short end-to-end length. Valves are for use with water, oil, air, and inert gas. All divert flow between ports.
Control flow in two directions from a single source—these valves have two handles for independent operation of each outlet. Use them with water, oil, and inert gas.
Divert the flow of compressed air and other media to multiple pieces of equipment. Use with water, oil, air, and inert gas.
Also known as shuttle valves, these automatically switch the inlet source as pressure changes; they always direct flow from the higher-pressure side-port inlet to the top-port outlet. Use them with water, oil, air, and inert gas.
Insert tubing into the fittings on these valves—no heat, solder, or flux required. All are for use with water, oil, air, and inert gas. They divert flow between ports in tubing lines.
Bolt these valves to flanges to divert flow between ports in flanged pipelines. They’re for use with water, oil, air, and inert gas.
Barbs grip onto tubing, providing a secure hold. Use with water, oil, air, and inert gas. These valves divert flow between ports in tubing lines.
There’s no need to unbolt these valves for cleaning—remove the handle and slide the valve apart for inline access to internal components. Also known as elliptical valves, they have a fluoroelastomer seal and a polypropylene body for diverting flow in chemical-processing applications.
Barbed fittings on these valves grip onto tubing, providing a secure hold. To divert flow between ports in chemical-processing applications, they have a chemical-resistant seal and a PVDF body to withstand aggressive and corrosive solutions.
Insert tubing into the fittings on these valves—no heat, solder, or flux required. Designed for diverting flow between ports in chemical tubing lines, they have a fluoroelastomer seal and a PVDF body to withstand aggressive and corrosive solutions.
These valves operate on electricity to automatically divert flow between ports. Use with water, oil, air, and inert gas.
Lower profile than other solenoid diverting valves and available in smaller pipe sizes, these valves are often used to automatically divert flow between ports in tight spots. Use them with water, oil, air, and inert gas. All operate on electricity.
Often used for emission analysis and gas processing, these valves attach to each other horizontally to create one centralized manifold for servicing multiple process lines. All are rated for use with water, oil, air, and inert gas. They operate on electricity to automatically divert flow between ports.
Often used for chemical analysis and other laboratory testing, these valves have a PTFE seal and body to withstand aggressive and corrosive solutions. They operate on electricity to automatically divert flow between ports.
For use with threaded pipe, these valves have NPT connections. Use them with water, oil, air, and inert gas. All operate on compressed air to automatically divert flow between ports more quickly than motor-driven valves. You must control the air to the actuator using either an electric pilot valve or a manual on/off valve.
Bolt these valves to flanges. Use them with water, oil, air, and inert gas. All operate on compressed air to automatically divert flow between ports more quickly than motor-driven valves. You must control the air to the actuator using either an electric pilot valve or a manual on/off valve.
For food and beverage systems that require frequent cleaning, these valves have sanitary quick-clamp connections for easy disassembly. They operate on compressed air to automatically divert flow between ports more quickly than motor-driven valves. You must control the air to the actuator using either an electric pilot valve or a manual on/off valve.
Often used in sanitary valve manifolds, these 3-A certified valves can be cleaned in place to eliminate the risk of cross contamination in food, beverage, and dairy lines. All have sanitary quick-clamp fittings for easy disassembly. They operate on compressed air to automatically divert flow between ports more quickly than motor-driven valves. You must control the air to the actuator using either an electric pilot valve or a manual on/off valve.
The motor on these valves can handle diverting applications with high flow rates and pressures. They operate on electricity to automatically divert flow between ports.
Repair actuated on/off valves from Asco, Burkert, Granzow, and Parker with these kits that include replacement seals, plunger assemblies, and springs.
Use electricity to start and stop flow to valves automatically.
Automatically start, stop, and adjust flow through valves.
Also known as proportional solenoid valves, these adjust and regulate flow based on the intensity of the electrical signal into the valve.
Available in smaller pipe sizes than other solenoid flow-adjustment valves, these are often used with gas chromatography equipment and analytical instrumentation. They adjust and regulate flow based on the intensity of the electrical signal into the valve. They're often integrated into PLC systems for automatic control over the valve position based on system conditions.
Also known as proportional V-ball valves, these have a motor that adjusts and regulates flow in applications with higher flow rates and pressures than solenoid valves. As you increase the intensity of the electrical signal, the motor opens the valve, moving a ball with a V-cut opening that proportionately allows more flow as the valve opens. They're often integrated into PLC systems for automatic control over the valve position based on system conditions.
For faster actuation than motor-driven valves, these operate on compressed air. Integrate them into PLC systems for automatic control over the valve position based on system conditions. The actuator has a built-in electric pilot valve that controls the air supply to the valve. Set how much to open the valve using the programmable controller on the actuator.
Also known as stop cocks, install these valves on your tank for easy draining of air or fluid.
Often used to extend and then retract a cylinder at different speeds, these valves create two actions and have two exhaust ports, which allows you to control the speed of each action by attaching a flow control valve to each exhaust port. Also known as 5/2 valves, they actuate when voltage is applied to the electrical connection.
Run through equipment cycles up to 30% faster than with standard valves. These valves shift between flow positions in 1.7 ms. Often used to extend and then retract a cylinder at different speeds, they create two actions and have two exhaust ports, which allows you to control the speed of each action by attaching a flow control valve to each exhaust port.
These valves close all ports in the off position to stop equipment in a locked position with air pressure holding it in place. Often used to extend and then retract a cylinder at different speeds, they create two actions and have two exhaust ports, which allows you to control the speed of each action by attaching a flow control valve to each exhaust port. Apply voltage to the electrical connection to actuate.
In the off position, these valves exhaust all air pressure, allowing the equipment to return to the neutral position. Often used to extend and then retract a cylinder at different speeds, they create two actions and have two exhaust ports, which allows you to control the speed of each action by attaching a flow control valve to each exhaust port. Apply voltage to the electrical connection to actuate.
Also known as 4-way and 5/2 valves, these valves create two actions, such as extending and then retracting a double-acting cylinder. Apply voltage to the electrical connection to actuate.
These valves create one action, such as extending a cylinder. Apply voltage to the electrical connection to actuate. They're also known as 3/2 valves.
Run through equipment cycles up to 30% faster than with standard valves. Also known as 3/2 valves, they create one action, such as extending a cylinder. Apply voltage to the electrical connection to actuate.
Also known as 3/3 valves, these valves close all ports in the off position to stop equipment in a locked position with air pressure holding it in place. They're often used for vacuum suction and release applications and intermediate cylinder stops.
Create two actions at the same time, such as extending two single-acting cylinders at once. Apply voltage to the electrical connection to actuate. Also known as pressure center valves.
Use a single valve to create motion and control the speed of that motion.
Ceramic plates form a longer-lasting seal against oil and dust than rubber seals that deteriorate over time. These valves withstand use in corrosive, dusty, and dirty environments such as foundries, paper mills, and steel plants. Apply voltage to the electrical connection to actuate.
These valves are rated for environments where hazardous material is present. They actuate when voltage is applied to the electrical connection.
Rated IP69K, these valves withstand high-pressure, high-temperature washdowns. Their smooth design keeps out dust, dirt, and contaminants, making them easier to keep clean. Apply voltage to the electrical connection to actuate.
With two 3-way integrated solenoid valves, these electrically controlled valves direct airflow to end-of-arm tools that don’t require vacuum suction, such as pick-and-place grippers. Also known as 3/2 valves, each of the two solenoid valves directs air to a different port.
Often used to extend and then retract a cylinder at different speeds, they create two actions and have two exhaust ports, which allows you to control the speed of each action by attaching a flow control valve to each exhaust port. Also known as pilot valves and 4-way valves, they use an air signal to actuate, so they're good for environments where electrical use may be dangerous.
In the off position, these valves stop equipment in a locked position with air pressure holding it in place. Often used to extend and then retract a cylinder at different speeds, they create two actions and have two exhaust ports, which allows you to control the speed of each action by attaching a flow control valve to each exhaust port. They actuate by air signal, so they're good for environments where electrical use may be dangerous.
These valves create one action, such as extending a cylinder. Also known as 3/2 or pilot valves, they use an air signal to actuate, so they're good for environments where electrical use may be dangerous.
Mount valves to a single-station base or to a manifold, which allows a single pressure source for multiple valves, then add or remove valves as your needs change.
Mix and match valve styles on one manifold to meet your control needs. Mount multiple valves to a manifold to reduce piping requirements and create multiple actions from a single pressure input.
A padlock locks the handle of these valves in the shut-off position so you can disconnect air tools safely.
Control flow in two directions from a single source—these valves have two balls for independent control and shut-off of each outlet.
Also known as blocking valves, these valves allow airflow while an air signal is applied to the air pilot. When the signal stops, the valve closes, trapping air in the system.
Also known as solenoid valves, these valves are operated by an electrical signal to turn airflow on or off.
With two 2-way integrated solenoid valves, these electrically controlled valves direct airflow to venturi pumps, which generate the suction you need to run end-of-arm tools, such as vacuum cups.
Install these valves on your air tank outlet—at the end of the day, they automatically close to save energy.
Designed for use in dust-collection systems, these diaphragm valves periodically burst air to knock debris from filters.
Convert a continuous stream of air into a series of quick pulses, reducing air consumption by up to 50% and improving performance in air-blowing applications such as cleaning and drying.
Choose the pressure range you need. When these valves receive an air signal, they quickly dump exhaust air to the atmosphere without routing it back through a directional control valve to speed up the movement of equipment. They're often used with air compressors that require continuous operation. Also known as quick exhaust valves.
Protect air-powered equipment in emergency shut-off situations—when system pressure drops, these valves automatically close to stop cylinder motion, even at mid-stroke. They control the speed of air-powered equipment by adjusting the volume of airflow entering or exiting.
Set the electronic timer on these drain valves to open automatically at your specified time interval.
These withstand at least double the pressure of our other timer-operated drain valves.
Use the digital display to set these valves to open automatically at precise intervals.
Also known as Monday-morning valves, these valves slowly introduce pressure to reduce surge damage during start-up.
With an integrated valve and multiple mounting options, these air cylinders install quickly, right where you need them, to push and pull light loads.
Keep fluids flowing—these valves twist and turn to prevent your hose from kinking.
Convert one faucet into two, four, or five outlets.
Start and stop the flow of water through your garden hose.
Direct flow with an electronic signal.
Direct flow manually with a lever.
Control flow with an electrical signal.
Control the direction of flow or stop flow altogether.
Convert an everyday syringe into a gas sampling syringe. These valves allow you to collect, transport, and store gas samples without worrying about evaporation or leaks.