We will reply to your message within an hour.
These rods, also known as drill blanks, have an undersized diameter for machining your own jobbers'-length drill bits.
These rod sets are supplied in a metal index case with fold-out panels.
Also known as reamer blanks, these rods are hardened for increased abrasion and impact resistance.
Ready for turning in a lathe, these precision-ground rods have a tight diameter tolerance and are held to a strict straightness tolerance.
Also known as cobalt steel, this M42 tool steel maintains its hardness in high-speed cutting applications that generate intense heat. Use it to make tools for cutting extremely hard materials.
Ready for turning in a lathe, these rods are precision ground to a tight diameter tolerance.
Hardened for increased abrasion and impact resistance, these precision-ground rods have a tight diameter tolerance and are ready for turning in your lathe.
Precision ground and held to a strict straightness tolerance, these rods are ready for turning in your lathe.
Hardened for increased abrasion and impact resistance, these rods are precision ground with a tight diameter tolerance.
All set for turning in your lathe, these precision-ground rods are held to a strict straightness tolerance.
The diameter on these rods is precision ground while the straightness is held to a strict tolerance, so they're ready for turning in a lathe.
This material has tighter tolerances than standard 303 stainless steel.
This material has tighter tolerances than standard 304 stainless steel.
Hardened for improved strength and wear resistance, these rods are precision ground to a strict diameter tolerance. Use them for turning applications in your lathe.
Each piece is precision ground to offer tighter tolerances than standard 17-4 PH stainless steel.
Also known as Project 70+, this material machines faster with less wear on cutting tools than standard 17-4 PH stainless steel.
Precision ground to a tight diameter tolerance, these rods are all set for turning applications in a lathe.
Hardened for superior wear resistance, these rods are precision ground to a tight diameter tolerance so they’re ready for turning in a lathe.
Ready for turning in your lathe, these rods are precision ground to a tight tolerance.
With a diameter that’s held to a close tolerance, this material is hardened for increased wear and abrasion resistance.
This material is precision ground to offer tighter tolerances than standard 316 stainless steel.
Ready for turning in a lathe, these rods are precision ground and held to a strict straightness tolerance.
Precision ground and held to a strict tightness tolerance, these rods are ready for turning in a lathe.
These rods are precision ground and held to a strict straightness tolerance, so they're ready for turning in a lathe.
Ready for turning in your lathe, these rods are precision ground and held to a strict straightness tolerance.
Combine these general purpose shafts with a linear bearing and shaft support to create a basic linear motion system.
Mount these externally threaded shafts into tapped holes rather than using a shaft support, or attach a hex nut, shaft collar, or other threaded accessory.
Internal threads allow you to mount these shafts onto threaded studs and fasteners, no shaft supports needed.
For a snug fit with a linear bearing in high-precision applications, these shafts are turned, ground, and polished to tight diameter and straightness tolerances.
Lighter than solid shafts, hollow shafts reduce your total system weight and allow you to run various media such as electrical wiring, compressed air tubing, coolants, or lubricants through the center.
Keep a material certificate on hand for compliance and quality assurance needs. Certificates include a traceable lot number and material test report. These hollow shafts reduce system weight and allow you to run various media such as electrical wiring, compressed air tubing, coolants, or lubricants through the center.
With 2" of each end softened, it's easier to machine a custom end for mounting. The rest of the shaft is case-hardened, which increases hardness and wear resistance on the surface of the shaft while allowing the center to remain soft for absorbing stresses caused by shifting loads.
For your compliance and quality assurance needs, these shafts come with a material certificate with a traceable lot number.
Made with two pieces, these shaft supports secure your shaft parallel to your mounting surface and make it easy to access the shaft without having to slide it out or uninstall the support. Use these supports when working with light to medium loads where shaft alignment is not critical.
A removable collar allows access to the shaft without unbolting the flange. For use with light to medium loads where shaft alignment is not critical, these supports allow you to hold linear shafts perpendicular to the mounting surface. Secure the shaft by tightening the clamping screw.
Replace worn shafts in two-piece support-rail shaft systems, or mate with a support rail to create your own. The tapped mounting holes match those on our Support Rails.
These shafts include a support rail for a stable setup that eliminates bending and prevents linear bearings from rotating.
Combine these general purpose drive shafts with gears, sprockets, and bearings to transmit rotary motion.
Eight times straighter than standard rotary shafts, these tight-tolerance shafts minimize vibrations and reduce wear to bearings and other components. They also have diameter tolerances that are twice as tight as standard rotary shafts.
Thread these shafts into a tapped hole to support idler sprockets and pulleys in tensioning applications.
Mount the flange to a machine or wall to support idler sprockets and pulleys in tensioning applications. They include washers and a nut to position your component and hold it in place.
Combine with a machine key to transmit torque to gears, sprockets, and other power transmission components.
In addition to diameter tolerances that are twice as tight as standard keyed shafts, these shafts include a traceable lot number and test report. Use them with machine keys to transmit torque to gears, sprockets, and other power transmission components.
These shafts have keyways only on the ends, leaving a plain shaft in the center. Use the keyways with machine keys to transmit torque to gears, sprockets, and other keyed components. Use the middle of the shaft with bearings and other round-bore components.
A flat surface area allows set screws to dig into the shaft for securely mounting gears, sprockets, and bearings.
Connect these internally threaded shafts directly to threaded components, or use a fastener to secure. They have a flat surface area that allows set screws to dig into the shaft for securely mounting gears, sprockets, and bearings.
The diameter of these shafts is slightly smaller than listed, so precision ball bearings (ABEC-3 and above) slide on without any tools.
Connect these internally threaded shafts directly to threaded components, or use a fastener to secure.
Clip retaining rings into the grooves to separate and position gears, sprockets, and bearings.
Good for hydraulic systems, machine tools, and other high-torque applications, these shafts have teeth that transmit high rotational loads.
A shoulder near the end of the shaft provides a stop for gears, sprockets, and bearings.
Attach threaded accessories, such as mixer propellers and fan blades, to the end of these shafts.
Create a compact linear and rotary motion system for applications requiring complex, fast movements, such as robotics.
From one compact system, transmit linear or rotary motion or both at once (sometimes called spiral motion). Because of these different motions, these ball screw/splines and bearings create efficient, fluid movements in complex automated applications, such as pick-and-place robots.
Often used in wet and dirty environments, these sleeve splines and bearings create a compact linear and rotary motion system.
Also known as single-start and self-locking lead screws and nuts, these have a single thread that runs the length of the screw. The nut travels only when the screw turns, so your system won't unexpectedly move when the lead screw is at rest.
Multiple thread channels (also known as thread starts) create faster linear travel than lead screws with a single thread start.
Also known as trapezoidal-thread lead screws and nuts.